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Drug-induced Torsade-de-Pointes (TdP) has been responsible for the withdrawal of

many drugs from the market and is therefore of major concern to global regulatory

agencies and the pharmaceutical industry. The Comprehensive in vitro Proarrhythmia

Assay (CiPA) was proposed to improve prediction of TdP risk, using in silico models and

in vitro multi-channel pharmacology data as integral parts of this initiative. Previously,

we reported that combining dynamic interactions between drugs and the rapid delayed

rectifier potassium current (IKr) with multi-channel pharmacology is important for TdP risk

classification, and we modified the original O’Hara Rudy ventricular cell mathematical

model to include a Markov model of IKr to represent dynamic drug-IKr interactions

(IKr-dynamic ORd model). We also developed a novel metric that could separate drugs

with different TdP liabilities at high concentrations based on total electronic charge carried

by the major inward ionic currents during the action potential. In this study, we further

optimized the IKr-dynamic ORd model by refining model parameters using published

human cardiomyocyte experimental data under control and drug block conditions. Using

this optimized model and manual patch clamp data, we developed an updated version

of the metric that quantifies the net electronic charge carried by major inward and

outward ionic currents during the steady state action potential, which could classify

the level of drug-induced TdP risk across a wide range of concentrations and pacing

rates. We also established a framework to quantitatively evaluate a system’s robustness

against the induction of early afterdepolarizations (EADs), and demonstrated that the

new metric is correlated with the cell’s robustness to the pro-EAD perturbation of IKr

conductance reduction. In summary, in this work we present an optimized model that

is more consistent with experimental data, an improved metric that can classify drugs

at concentrations both near and higher than clinical exposure, and a physiological

framework to check the relationship between a metric and EAD. These findings provide

a solid foundation for using in silico models for the regulatory assessment of TdP risk

under the CiPA paradigm.

Keywords: Torsade-de-Pointes (TdP), Comprehensive in vitro Proarrhythmia Assay (CiPA), rapid delayed rectifier
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INTRODUCTION

Drug-induced Torsade-de-Pointes (TdP) is a lethal arrhythmia
that has caused removal of several drugs from the market
(Gintant, 2008). The current cardiac safety paradigm (described
by the ICH E14 and S7B guidelines) focuses on two markers
to assess TdP risk: in vitro block of the hERG (human
Ether-à-go-go-Related Gene) channel (representing the rapidly
activating delayed rectifier potassium current, or IKr), and
prolongation of the QTc interval in clinical studies (Sager et al.,
2014). However, while eliminating the incidence of TdP in
marketed drugs, this testing regime primarily aims at detecting
delayed ventricular repolarization rather than the clinical end
point TdP, and may be assigning proarrhythmia liability to
drugs that could in fact be safe (Sager et al., 2014). Therefore,
the Comprehensive in vitro Proarrhythmia Assay (CiPA) was
proposed as a new regulatory paradigm that assesses drug TdP
risk by combining measurements of drug effects on multiple
cardiac ionic currents in vitro with in silico modeling of drug
effects on the ventricular myocyte (Sager et al., 2014). The O’Hara
Rudy cardiac cell model (ORd) (O’Hara et al., 2011) was chosen
as the consensus base in silico model and a set of 28 drugs with
known levels of clinical TdP risk (high, intermediate, low/none)
were identified for the development and evaluation of the CiPA
paradigm (Colatsky et al., 2016; Fermini et al., 2016). The three
TdP risk categories were assigned by a Clinical Translation
Working Group comprised of clinical cardiologists, safety
pharmacologists, and clinical electrophysiologists according to
published and publically available data and expert opinion. The
28 CiPA drugs were separated into a training set of 12 compounds
to be used for calibration of the in silicomodel and the remaining
16 compounds are to be used later for validating the model. Both
the training and validation compound sets comprise drugs that
cover the full range of TdP risk categories and demonstrate varied
electrophysiological profiles.

Previous studies have presented computational frameworks
to assess TdP risk (Mirams et al., 2011; Kramer et al., 2013;
Lancaster and Sobie, 2016), but their use within the CiPA
framework is limited due to their differing TdP risk categories
from those defined in CiPA. In addition, prior studies simulated
drug effects using the half-maximal blocking concentration
(IC50) for different drugs, which assumes simple pore block
of the ion channels and neglects any intricacies of drug-
ion channel interactions that may be important factors in
predicting relative TdP risk. The importance of incorporating
a kinetic representation of drug-ion channel interactions has
been demonstrated in previous publications (Di Veroli et al.,
2013, 2014; Li et al., 2017). In the Li et al. (2017) study we
recently reported the development of a novel IKr dynamic
model that can capture drug-channel dynamic interactions, and
the integration of this IKr model into the ORd cardiac model

Abbreviations:CiPA, Comprehensive in vitro proarrhythmia assay; TdP, Torsade-

de-Pointes; ORd, O’Hara Rudy dynamic cell model (O’Hara et al., 2011); IKr-dyn

ORd, ORdmodel with dynamic IKr; Inet, net current (sum of currents ICaL, INaL,

IKr, IKs, IK1, Ito); qNet, charge passed by Inet from the beginning to the end of the

AP beat (same for qCaL and ICaL, qNaL and INaL...); cqInward, change in charge

passed by ICaL and INaL; Cmax, free maximum plasma clinical drug exposures.

with multi-channel pharmacology data. This IKr-dynamic ORd
model (hereinafter referred to as the original IKr-dyn ORd
model) was calibrated based on the original ORd model so
that it can reproduce experimentally recorded adult human left
ventricular cardiomyocyte action potential (AP)morphology and
rate dependency under control (drug-free) conditions. However,
this model calibration process in our previous work did not
include experimental AP changes under the influence of different
channel blocking drugs. This may negatively affect the model’s
predictive power as this model is intended for simulating drug
effects under channel blocking conditions.

In this study we further optimized the original IKr-dyn
ORd model by adjusting channel conductance values of major
ionic currents according to human ventricular cardiomyocyte
experimental data in the presence and absence of various drugs
with different channel blocking activities. We show that this
optimization procedure allowed the model (hereinafter referred
to as optimized IKr-dyn ORdmodel) to quantify more accurately
the impact of each individual current on the AP. We then
screened a series of published and novel metrics computed by
this model based on their capability of stratifying CiPA training
compounds into their corresponding TdP risk categories using
drug-IKr binding kinetics and multi-channel pharmacology data
collected earlier through manual patch clamp systems (Li et al.,
2017). The best metric identified to date is based on drug-induced
changes to the net charge carried by ionic currents (qNet) during
the AP, which can stratify the 12 CiPA training drugs into three
TdP risk levels across various conditions. We also show that
the increased predictive power of this metric is mechanistically
linked to the incorporation of IKr-drug binding dynamics and
the improved representation of the block effects of individual
currents, two important features of the optimized IKr-dyn ORd
model. Finally, we developed a framework to evaluate a cell’s
robustness against EAD generation, and demonstrated that the
new qNet metric is correlated with the system’s repolarization
robustness to external pro-EAD perturbations that could reduce
the membrane density of the hERG channel (IKr conductance).

METHODS

Optimization of the IKr-Dynamic ORd
Model
The original IKr-dyn ORd model (described in Li et al., 2017
and Expanded Methods in the Supplemental Material) was
further modified (optimized IKr-dyn ORd) by scaling five ionic
current conductances [IKr, the slow rectifier potassium current
(IKs), inwardly rectifying potassium current (IK1), the L-type
calcium current (ICaL) and the late sodium current (INaL)]
so that the model provides a good fit to published APD rate
dependence experimental data for control and five channel
blockers (O’Hara et al., 2011). The optimization was performed
using the model parameterization algorithm described in Li et al.
(2014). Briefly, an initial set of scaling factors was defined within
a certain range (between 0.001 and 9) and their goodness of
fit was assessed using an objective cost function defined as the
weighted sum of the squared errors between model simulations
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and experimental measurements. The set of scaling factors then
underwent iterative changes (i.e., mutation and recombination)
to create new generations of parameters and this process was
continued until the convergence criterion was met (when the
change in the minimum error of the new parameters is less than
5% over the last 30 generations). The experimental data used for
fitting were taken from Figure 8 of the ORdmodel paper (O’Hara
et al., 2011) and comprise APD rate dependence data for control
and 5 drug blocking conditions: 1 µM E-4031 (70% IKr block),
1 µM HMR-1556 (90% IKs block), 1 µM nisoldipine (90% ICaL
block), 100 µM BaCl2 (90% IK1 block), 10 µM mexiletine (54%
INaL, 9% IKr, and 20% ICaL block). The simulated percentage
of block for all drugs was kept the same as in the ORd model
paper (O’Hara et al., 2011), apart from mexiletine, which used
new pharmacology data from manual patch clamp systems at
physiological temperatures (Crumb et al., 2016). The algorithm
was run using in-house developed R scripts (R Core Team, 2014)
and C programs using the Snow, Rmpi and deSolve packages
(lsoda solver with a 10−6 relative and absolute tolerance) (Yu,
2002; Soetaert et al., 2010; Tierney et al., 2015) on the FDA High
Performance Computer (HPC) with 160 cores.

Simulation Protocol for Metric Evaluation
All simulations were run from control steady state conditions
(after 1,000 beats) at varying cycle lengths (CLs) 1,000, 2,000,
and 4,000 ms and stimulus of −80 µA/µF for 0.5 ms (as in the
original model). Block of ion channels at various concentrations
were simulated and run for another 1,000 beats to reach a
new steady state with drug. The last two beats were analyzed
to check for alternans, which was observed in the presence of
early afterdepolarizations (EADs), defined as having a positive
derivative during the repolarization phase of the AP. The
pharmacology data for the 12 CiPA training compounds (the
full list and their corresponding risk categories can be found in
Supplemental Table 1) were the same as in our previous report
(Li et al., 2017), where drug-IKr binding kinetic parameters were
estimated using an in vitro IKr dynamic protocol and IC50/Hill
coefficients based on Crumb et al. (2016) were used for the
remaining channels [the peak sodium current (INa), INaL, ICaL,
IK1, IKs and transient outward potassium current (Ito); all the
parameters can be found in the Supplemental Tables 2 and 3].
Simulations were run for a range of drug concentrations: from
0.5x up to 25x free maximum plasma clinical drug exposures
(Cmax). Simulations were run in R and C using the deSolve
package (Soetaert et al., 2010).

We assessed a range of standard metrics as also considered
in Mirams et al. (2011), Lancaster and Sobie (2016): resting
membrane potential (resting Vm), maximum upstroke velocity
(dV/dtmax), peak membrane potential (peak Vm), APD at
50% of the amplitude (APD50), APD at 90% of the amplitude
(APD90), APD triangulation (APDtri) defined as APD90-
APD50, diastolic intracellular calcium concentration ([Ca2+]i)
(diastolic Ca), peak [Ca2+]i (peak Ca), calcium transient duration
at 50% (CaD50) and 90% (CaD90) of the amplitude, calcium
transient triangulation (Catri) defined as CaD90-CaD50, as well
as the cqInward metric that quantifies the change in the amount
of charge carried by INaL and ICaL, which demonstrated good

separation between risk categories in our previous report (Li
et al., 2017). In addition, we considered a new metric (qNet)
calculated as the net charge constituting (the integral or area
under the curve of) the net current (Inet) from the beginning to
the end of the simulated beat (defined as Inet = ICaL + INaL +

IKr+ IKs+ IK1+ Ito). The currents making up Inet within our
study play an important role in modulating arrhythmic risk and
have been chosen based on input from pharmaceutical company
scientists and safety pharmacology experts as the main currents
of interest within the CiPA paradigm, as outlined in Fermini et al.
(2016).

To assess the robustness of a cell against EAD generation,
we simulated an added perturbation by reducing the maximum
conductance of IKr and reporting the minimum IKr reduction
needed to trigger an EAD. Simulations were run for varying
degrees of IKr conductance reduction (using a binary search
algorithm) at a CL of 2,000 ms with a precision of 0.01%.
For each IKr reduction tested, EADs were defined as having a
positive differential (dV/dt) during the plateau phase of the AP
(between APD30 and APD90) after 100 beats. The cell model
was pulsed for a 100 beats before checking for EADs to allow the
system to reach quasi-steady state, as in Kurata et al. (2017). The
minimum IKr conductance reduction needed to trigger an EAD
was named IKr reduction threshold, which reflects the system’s
repolarization robustness against, or distance from, EADs. To
assess the relationship between the metric and the repolarization
robustness, we calculated the correlation coefficients (using the
pearson method) between the metric at steady state after 1,000
beats (without added IKr reduction) and the IKr reduction
threshold for each drug across a series of concentrations (0.5x–
25x Cmax). Situations where no IKr reduction threshold could
be calculated (no EADs could be induced for the highest IKr
reduction tested) or IKr reduction threshold is 0 (an EAD
occurred without any added perturbation) were excluded from
the correlation calculation.

Classification Methods
To assess the ability of the metrics to identify each drug’s
TdP risk level, we performed a proportional odds logistic
regression classification and a leave-one-out validation, as in
Mirams et al. (2011). If EADs were observed, the metric value
at the concentration prior to EAD generation was used for the
classification. We used the R lrm function from the rms package
(https://CRAN.R-project.org/package=rms) and calculated the
classification training error for each metric as follows: the mean
(across 12 drugs) of the absolute error (difference between
predicted and known risk categories), with the risk categories
defined as 1 = low risk, 2 = intermediate risk and 3 = high risk.
The proportional odds logistic regression model is a regression
model for ordinal dependent variables, and accounts for the
ordering by using cumulative probabilities defined as the odds
of (Y ≤ i) = P(Y ≤ i)/(1 − P(Y ≤ i)) for each risk category
i, where Y is the variable that represents a drug’s risk category
and P(X) is the probability of X. The function uses maximum
likelihood estimates to calculate the probability of each drug
being a member of each risk category, and the drug is assigned
to the risk category corresponding to its highest probability. We
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then performed a leave-one-out validation by removing one drug
from the data set and then predicting its risk category based on
the classification of the remaining drugs. This was performed
in turn for each drug within the data set and its leave-one-out
prediction error was calculated the same way as the training
error.

RESULTS

Optimized IKr-dyn ORd Model
The optimized IKr-dyn ORd model was built by scaling the
conductance of the main ion currents (IKr, IK1, IKs, INaL, ICaL)
of the original IKr-dyn ORd model (presented in Li et al., 2017)
to fit the APD rate dependence experimental data in control
and drug block conditions from O’Hara et al. (2011). The set
of scaling factors that gives the best fit for the optimized model
is as follows: scaling IKr by 1.013, IKs by 1.870, IK1 by 1.698,
ICaL by 1.007, and INaL by 2.661, as summarized in Table 1.
A comparison of the simulation results from both the original
and optimized models to the experimental data is shown in
Figure 1 and the corresponding sum of squares errors (between
simulation and experimental data) are shown in Table 2. Sum
of squares error for the original ORd model as presented in
their paper (O’Hara et al., 2011) are also shown in Table 2 for
comparison purposes. We see that although for control and some
current blocking conditions the original IKr-dyn ORd model has
errors similar to the original ORd model, for other conditions
the errors were worsened (IK1 and ICaL blocking experiments),
resulting in an average error bigger than the original ORd model
(72.33 vs. 57.77). However, the discrepancy between simulations
and experiments was significantly reduced in the new optimized
IKr-dyn ORd model.

As can be seen in Figure 1A, under control conditions both
the original IKr-dyn ORd and optimized IKr-dyn ORd models
display similar behavior. Although for control data points, the
optimized IKr-dyn ORd model fitting is slightly worse than
the original IKr-dyn ORd model (fitting error 22.63 vs. 18.82
in Table 2), the average fit across both control and all drug
block conditions is much better for the optimized IKr-dyn ORd

TABLE 1 | Conductance scaling factors for the original and optimized IKr-dynamic

O’Hara-Rudy models (original and optimized IKr-dyn ORd): current conductances

of the rapid (IKr) and slow (IKs) rectifier potassium current, inwardly rectifying

potassium current (IK1), L-type calcium current (ICaL) and late sodium current

(INaL) in the model are multiplied by the corresponding scaling factor.

Scaled currents Original IKr-dyn

ORd model

Optimized IKr-dyn

ORd model

IKr 0.9 1.013

IKs 1.0 1.870

IK1 1.0 1.698

ICaL 1.0 1.007

INaL 1.0 2.661

Note that the IKr conductance in the original IKr-dyn ORd model was scaled as described

in Li et al. (2017).

model compared to the original IKr-dyn ORd model (fitting
error 30.81 vs. 72.33). The main improvements in the quality
of fit to the experimental data are observed for drug blocking
conditions, especially with mexiletine (INaL blocker) and E-
4031 (IKr blocker) (Figures 1B,E respectively). In the case of
mexiletine, a reduction in the fitting error from 91.09 (original
IKr-dyn ORd model) to 18.36 (optimized IKr-dyn ORd model)
was achieved (Table 2). Figure 1B shows that, with the original
IKr-dyn ORd model, the simulated APD prolongation with
mexiletine is significantly longer than experimental data. A
similar pattern can be seen for the IKr blocker E-4031 (Table 2
and Figure 1E). Due to the opposite roles of INaL and IKr in
prolonging AP (Johannesen et al., 2016), this suggests that block
of INaL is underestimated and that of IKr is overestimated in
the original IKr-dyn ORdmodel. The optimized model corrected
these inaccuracies with better fitting to the experimental data,
which is important for TdP risk assessment as it is known
that INaL block plays an important role in counteracting pro-
arrhythmic APD prolongation of IKr block (Orth et al., 2006;
Johannesen et al., 2016).

To further understand the contribution of various ionic
currents to AP profile after the optimization process, we
compared the simulated AP traces and the ionic currents
over the time course of the steady state AP between the
original and our optimized IKr-dyn ORd model at different
cycle lengths. As described earlier in this section all of the
current conductances are increased in the optimized IKr-dyn
ORd model (Table 1). However, the AP shapes from both
models under control conditions are very similar, as shown in
Figure 2A. This is consistent with the fact that both models fit
the control AP morphology parameters (Figure 1A) reasonably
well. On the other hand, while only a small change in current
amplitude is observed for ICaL (Figure 2C), which only has
a 0.7% change in conductance (Table 1), clear differences are
observed for all other currents (IKr, INaL, IKs and IK1) with
the biggest changes occurring for INaL (conductance is increased
by 166.1% between the optimized and original models as shown
in Table 1). This further demonstrates that INaL plays a bigger
role in the optimized model than the original IKr-dyn ORd
model.

Candidate Metrics
We then investigated whether the optimized IKr-dyn ORdmodel
could be used to stratify proarrhythmia risk levels. As a first
step we explored the changes in AP and individual currents
induced by three representative drugs (one taken from each
one of the CiPA TdP risk categories), using pharmacology data
as used in Li et al. (2017). Since it is known that the subtle
balance between inward (such as INaL and ICaL) and outward
(such as IKr, IKs, IK1, and Ito) currents underlies the generation
of EADs, a mechanistic precursor to TdP (Vos et al., 1995;
Volders et al., 2000; Wu et al., 2002; Weiss et al., 2010), we
also examined the net current between inward and outward
currents (Inet) in addition to individual currents. Figure 3 shows
simulations of AP, Inet, ICaL, INaL, IKr, IKs, IK1, and Ito for
ranolazine (low risk), cisapride (intermediate risk) and dofetilide
(high risk), for a CL of 2,000 ms and a dose of 25x Cmax
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FIGURE 1 | Steady state action potential duration (APD) rate dependency under the conditions of control (A), 10 µM mexiletine [late sodium current INaL block (B)],

1 µM nisoldipine [L-type calcium current ICaL block (C)], 1 µM HMR-1556 [slow rectifier potassium current IKs block (D)], 1 µM E-4031 [rapid rectifier potassium

current IKr block (E)] and 100 µM BACl2 [inwardly rectifying potassium current IK1 block (F)] at varying cycle lengths (CLs) for the original dynamic IKr O’Hara Rudy

model (original IKr-dyn ORd; dashed lines) and the optimized dynamic IKr O’Hara Rudy model (optimized IKr-dyn ORd model; solid line). Experimental data mean

(symbol) and standard deviation (error bars) are from O’Hara et al. (2011). Control (A) shows APD at 90% (APD90; filled circles), 70% (APD70; filled triangles), 50%

(APD50; filled squares) and 30% (APD30; plus sign) repolarization. All other panels show APD90.

TABLE 2 | Sum of squares error (divided by 100) between experimental action

potential duration (APD) rate dependence mean data (from Figure 8 in O’Hara

et al., 2011) and the original O’Hara Rudy model (original ORd) (O’Hara et al.,

2011), the original IKr-dyn ORd (Li et al., 2017) as well as the optimized IKr-dyn

ORd under different conditions: control, mexiletine (blocks mainly INaL), HMR

1556 (blocks IKs), E-4031 (blocks IKr), BaCl2 (blocks IK1) and nisoldipine (blocks

ICaL).

Experiment Sum of squares error

Original ORd Original IKr-dyn

ORd

Optimized IKr-dyn

ORd

Control 17.20 18.82 22.63

Mexiletine (INaL) 92.92* 91.09 18.36

HMR 1556 (IKs) 56.35 57.08 55.34

E4031 (IKr) 145.03 144.87 72.33

Bacl2 (IK1) 29.83 67.47 11.41

Nisoldipine (ICaL) 5.29 54.62 4.76

Average 57.77 72.33 30.81

*Error was calculated using the updated mexiletine IC50 data (Crumb et al., 2016); using

the block suggested in the ORd paper of 90% INaL block (O’Hara et al., 2011), the sum

of squares error is of 38.48, changing the average error to 48.70.

using our optimized model. A slow pacing rate (CL 2,000 ms)
is used here because bradycardia is a known risk factor for
TdP (Kurita et al., 1992; Kallergis et al., 2012), and a high

concentration (25x Cmax) is used to highlight the potential
differences between various risk levels. The amount of electronic
charge carried by each current is calculated as the area under the
curve (AUC) of the individual current trace and is plotted for Inet
in Figure 3C.

We see in Figure 3A that all three drugs cause prolongation
of APD and the low risk drug, ranolazine, shows a greater
prolongation of APD compared to the intermediate risk drug,
cisapride (266.78 vs. 176 ms). The performance of APD90 as
a metric for all the drugs from 0.5 to 25x Cmax, can be seen
in Supplemental Figure 1. In fact, verapamil and ranolazine
(both low risk) display APDs greater than most intermediate
risk drugs over a wide range of doses. Therefore, the amount
of APD prolongation is not a good indicator of the TdP risk
of a drug, demonstrating the unsuitability of APD alone as a
marker for TdP risk. However, we notice that Inet (Figure 3B),
calculated as the sum of the five main currents that modulate
the plateau phase of the action potential (ICaL, INaL, IK1, IKr,
IKs, and Ito, shown in Figures 3D–I), does correlate with the
TdP risk category. As shown in Figure 3C, the order of qNet
(charge carried by Inet integrated from the beginning to the end
of the AP beat) is consistent with the rank order of TdP risk
levels for the three drugs. At the end of the CL, ranolazine has
a qNet of 0.061 µC/µF while cisapride and dofetilide have a
qNet of 0.037 µC/µF and 0.013 µC/µF, respectively. A detailed
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FIGURE 2 | Action potential (AP) (A), INaL (B), ICaL (C), IKr (D), IKs (E), IK1 (F) traces under control conditions for the original IKr-dyn ORd (dashed line) and the

optimized IKr-dyn ORd (solid line) for CLs of 500 (red), 1,000 (green) and 2,000 (blue) ms.

examination of the individual current profiles reveals why
ranolazine caused the least amount of qNet decrease. As shown in
Figures 3D, G, ranolazine (green lines) caused amarked decrease
of the absolute amount of charge carried by IKr (qKr decrease of
0.119 µC/µF) and INaL (qNaL decrease of 0.07 µC/µF) at the
end of the AP beat compared to control (black lines). Because
the outward current IKr and inward current INaL have opposite
directions, ranolazine-induced reduction (in absolute values) of
the two currents balanced each other and resulted in only a
small change of the net charge at the end of the AP (qNet,
Figure 3C). In contrast, dofetilide (Figure 3D, red lines) and
cisapride (Figure 3D, blue lines) caused a significant reduction of
qKr (0.135 and 0.063µC/µF respectively) through direct channel
blocking, and a slight increase of qNaL through prolonged APD.
These two effects changed Inet in the same direction and worked
together to decrease qNet significantly, with dofetilide causing
the biggest decrease due to more significant blocking of IKr. Note
that these drugs have some effects on other currents (Ito, IKs, and
IK1) as well, but those changes are relatively small and will not
change the rank order of qNet values significantly for the three
drugs tested here. However, these other currents may become
important for drugs that directly block them. For example, the
effects on ICaL may be critical in determining the qNet change
and risk level for a calcium blocker.

These initial promising results prompted us to calculate this
new Inet-based metric, qNet, for all 12 CiPA training compounds
and systematically compare its capability of separating the three
TdP risk levels to a range of commonly tested metrics (described
in the Methods section). The risk categories, IC50 and IKr
dynamic parameters for each drug are listed in Supplemental
Tables 1–3. Included in the comparison is also the cqInward
metric, described in our previous study and defined as the
normalized drug-induced change of the charge carried by the
inward currents INaL and ICaL (Li et al., 2017). As shown in
Figure 4, we calculated the classification training error for each

metric over a range of doses (0.5–25x Cmax) and a range of CLs
(1,000, 2,000, and 4,000ms) for the 12 CiPA training compounds.
This error quantifies the mean (across the 12 CiPA drugs)
difference between known and predicted risk levels for each
metric. We can see that across the full range of concentrations
and all CLs the qNet metric shows the smallest classification
training error. Notably, the qNet metric shows a classification
training error of 0 for concentrations greater than or equal to
1x Cmax, meaning it consistently classifies each of the 12 CiPA
training compounds into the correct TdP risk category. The
cqInward metric performance is comparable to that of qNet at
low pacing rates (4,000 ms) and high drug concentrations. All of
the other standard metrics we considered show training errors
that never come down to 0, which fluctuate across the range of
doses.

The results presented in Figure 4 are consistent with the leave-
one-out validation described in Table 3 performed on a subset
of the doses tested (1, 10, and 20x Cmax) for a CL of 2,000
ms; the cqInward and qNet show the smallest prediction errors
with values of 0.33 and 0.08 respectively at 20x Cmax. The other
next best performing metrics are peak Vm with an error of
0.42 and APD50, APD90 with errors of 0.5 at Cmax 20x. Of
note, at 1x Cmax, qNet and APD90 all have the same prediction
error of 0.17. This is because at lower concentrations (1x Cmax)
the effects of each drug are harder to differentiate due to there
often being only subtle effects on the AP morphology. However,
the CiPA paradigm assumes that the assessment of TdP risk
may occur at any time during drug discovery and development,
even prior to the time the clinical effective drug concentrations
are known with any certainty. In addition, the incidence of
clinical TdP is limited and not necessarily related strictly to
normal (1x) clinical exposure (i.e., concomitant factors may play
a role in expressing clinical TdP events). Therefore, we propose
that a metric should be evaluated under multiple physiological
and pharmacological conditions. The overall evidence suggest

Frontiers in Physiology | www.frontiersin.org 6 August 2017 | Volume 8 | Article 616

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Dutta et al. In silico Proarrhythmia Risk Assessment

FIGURE 3 | Transmembrane voltage [Trans. voltage (A)], net current [Inet (B)], charge carried by Inet (C), INaL (D), Ito (E), ICaL (F), IKr (G), IKs (H), IK1 (I) traces for

control (black solid line), ranolazine, a low TdP risk drug (green dashed line narrow spacing), cisapride, an intermediate TdP risk drug (blue dashed line normal

spacing), and dofetilide, a high TdP risk drug (red dashed line wide spacing), at 25x Cmax for 2,000 ms CL using the optimized IKr-dyn ORd. Charge carried by Inet,

INaL and IKr integrated from the beginning to the end of the AP beat (qX) are displayed on the graph.

that qNet is the best among all the metrics tested, because it
has a training error of 0 across a wide range concentrations
(1–25x Cmax) at various pacing frequencies (2,000 and 4,000
ms), and the lowest leave-one-out error at all concentrations
tested.

The Impact of IKr-Drug Binding Kinetics
and Channel Conductance Optimization on
Risk Level Stratification
Compared to the original ORd (i.e., the consensus base model
for CiPA), the optimized IKr-dyn ORd model presented in this
work has two important changes: the incorporation of a dynamic
IKr model to capture drug binding kinetics (Li et al., 2017), and
an improved set of channel conductances to better represent the
contribution of individual currents to AP (Figures 1, 2). In order

to shed light on possible mechanistic differences among the drugs
tested, we used the best candidate metric qNet as a benchmark,
and compared the performance of the optimized IKr-dyn ORd
model with model variations where each of the changes was
removed in turn. Figure 5 shows computed qNet values for the
12 CiPA training drugs calculated over a range of drug doses
from 0.5x to 25x Cmax when using the optimized IKr-dyn ORd
model (Figure 5A), a model variation without incorporating
the IKr dynamic model (Figure 5B) and a model variation
incorporating the IKr dynamic model but without optimizing
channel conductances (Figure 5C). In line with results from
Figure 4 and Table 3, the metric qNet shows clear separation
between the 3 TdP risk categories across the range of doses
tested with the optimized IKr-dyn ORd model (Figure 5A);
however, this is not the case for the other two model variations
(Figures 5B,C).
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FIGURE 4 | Classification training error for a range of metrics [resting membrane potential (resting Vm), maximum upstroke velocity (dV/dtmax), peak membrane

potential (peak Vm), APD50, APD90, action potential (AP) triangulation (APDtri), diastolic intracellular calcium concentration ([Ca2+]i) (diastolic Ca), peak [Ca2+]i (peak

Ca), calcium transient duration at 50 and 90% of the amplitude (CaD50 and CaD90), calcium transient triangulation (Catri), change in amount of charge carried by

INaL and ICaL (cqInward) and the charge carried by Inet at the end of the AP beat normalized to control (qNet)] for varying drug doses (0.5–25x Cmax) and varying

CLs (1,000, 2,000, and 4,000 ms). Each box represents the mean (across 12 drugs) error (between predicted and known risk levels) for each metric at each

concentration (0.5–25X Cmax). A training error of 0 represents perfect separation between the risk categories.

The first model variation we tested does not have the IKr
dynamic model incorporated but instead uses simple IC50s to
represent channel block (Figure 5B). Note that thismodel variant
has gone through a channel conductance optimization process
similar to that presented in this article, as described in Dutta
et al. (2016), so the difference observed between this model
variant (Figure 5B) and the full optimized IKr-dyn ORd model
(Figure 5A) is mainly due to the different representation of IKr
block (dynamic vs. IC50s). From Figure 5B we can see that
there are two intermediate risk drugs that are not correctly
categorized: cisapride that is mixed with the high risk drugs, and
chlorpromazine that is mixed with the low risk drugs. Cisapride
is a potent and selective IKr blocker (IC50 10.1 nM and Cmax

2.6 nM see Supplementary Material), with a safety margin (IKr
IC50/Cmax) of 3.8 (Redfern et al., 2003), which is close to that
of the high risk drug dofetilide (IC50 4.87 nM and Cmax 2
nM, safety margin 2.4) for example. So if IC50 data are used
with an assumption of simple pore drug block, cisapride is
grouped with the high risk drugs. However, when we consider
the IKr-drug binding dynamic data (Li et al., 2017), cisapride,
but not high risk drugs like dofetilide, can rapidly dissociate from
the hERG channel during diastolic intervals because it is not
trapped in the closed channel. Consequently, cisapride has an
actual block potency lower than high risk drugs despite similar
IKr IC50/Cmax ratio, which may explain why it belongs to the
intermediate rather than high risk level. On the other hand,
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chlorpromazine is not a potent IKr blocker (safety margin 24.4,
similar to other low risk drugs) so when we look at IC50 only it
is classified closer to the low risk drugs. But when IKr dynamic
data are considered, chlorpromazine is highly trapped in the
closed hERG channel and very slow in unbinding during diastolic
intervals (Li et al., 2017). This makes it more dangerous than its
IKr IC50 suggests and thus classified as an intermediate rather

TABLE 3 | Leave-one-out prediction error for a range of metrics at a CL of 2,000

ms and 3 doses (1, 10, and 20x Cmax): resting membrane potential (resting Vm),

maximum upstroke velocity (dV/dtmax), peak membrane potential (peak Vm),

APD at 50 and 90% of the amplitude (APD50 and APD90), action potential (AP)

triangulation (APDtri), diastolic intracellular calcium concentration ([Ca2+]i)

(diastolic Ca), peak [Ca2+]i (peak Ca), calcium transient duration at 50 and 90% of

the amplitude (CaD50 and CaD90), calcium transient triangulation (Catri), change

in amount of charge carried by INaL and ICaL (cqInward) (Li et al., 2017) and

charge carried by the net current (qNet).

Metric Leave-one out prediction error

1x Cmax 10x Cmax 20x Cmax

qNet 0.17 0.08 0.08

cqInward 0.25 0.33 0.33

Catri 1.25 1.08 1.08

CaD90 1.42 1.42 0.83

CaD50 1.42 1.0 0.83

peak Ca 0.92 0.75 0.83

diastolic Ca 0.92 0.83 0.83

APDtri 0.5 0.67 0.58

APD90 0.17 0.5 0.5

APD50 0.33 0.33 0.5

peak Vm 0.42 0.42 0.42

dV/dtmax 0.42 0.83 1.17

resting Vm 1.00 0.75 0.75

than low risk drug. This demonstrates that including a dynamic
representation of IKr-ion channel interactions is important for
categorizing TdP risk of drugs and IC50 data alone are not
sufficient.

The second model variation we tested has the IKr dynamic
model included, but without optimized channel conductances
to reproduce AP changes under channel blocking conditions
(Figure 5C). Note that this model variant is the same as
the original IKr-dyn ORd model (Li et al., 2017) and, as
demonstrated in Figure 1, has an inaccurate quantification of the
block effects of individual currents compared to experimental
data. In this scenario the low risk drug ranolazine is misclassified
as a high risk compound (Figure 5C). Ranolazine is a potent IKr
and INaL current blocker and these two effects can balance each
other to reduce ranolazine’s TdP risk (Antzelevitch et al., 2004;
Johannesen et al., 2016; Saad et al., 2016). Because the INaL effect
is underestimated and the IKr effect is overestimated without
channel conductance optimization (Figure 1), ranolazine has
a dominant IKr block effects when simulated by this model
variant and thus will be mistakenly put in the high risk category
(Figure 5C). Taken together, this suggests that the two added
features are both important for TdP risk stratification and may
mechanistically explain why a certain drug belongs to a specific
TdP risk level.

Physiological Significance of qNet
In order to assess the physiological significance of the metric,
we borrowed some concepts from non-linear dynamic theory,
where EADs appear as membrane voltage oscillations when
the equilibrium state at the plateau phase (membrane voltage
between 0 and −40 mV) changes its stability via bifurcation (Qu
et al., 2013; Kurata et al., 2017). The robustness of the system
could be evaluated by applying a specific perturbation with a
series of strengths and measuring the range of the perturbation

FIGURE 5 | qNet for the 12 CiPA training compounds for a range of doses (0.5–25x Cmax) at a pacing rate of 2,000 ms. (A) Optimized IKr-dyn ORd; (B) A model

variation without the incorporation of the IKr dynamic model (note this is the same model as in Dutta et al., 2016) and; (C) A model variation without the optimized

channel conductances to accurately quantify block effects of individual currents (note this is the same model as in Li et al., 2017). Different TdP risk levels are color

coded (high risk in red, intermediate risk in blue and low/no risk in green). Results are not shown once drug concentrations are high enough to induce early after

depolarizations (EADs) (i.e., quinidine).
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the system can tolerate without changing stability (i.e., emergence
or annihilation of oscillations) (Kurata et al., 2008). We applied
this concept to our model using IKr maximum conductance
reduction as a perturbation. In this case the minimum IKr
reduction required to induce an EAD (IKr reduction threshold)
reflects the system’s robustness against, or distance from, EADs.

Therefore, for each drug over a range of concentrations from
0.5 to 25x Cmax we calculated the IKr reduction thresholds, and
checked their correlation with the metrics qNet, APD90, and
cqInward respectively. Detailed correlation plots for each metric
can be found in the Supplemental Figures 2–4. Table 4 shows the
correlation coefficients for each drug across all concentrations
for IKr reduction threshold vs. qNet, APD90 and cqInward
respectively. We see that qNet shows a strong correlation across
all drugs (close to 1). As qNet increases the IKr reduction
threshold (and the system’s robustness against EAD) increases
and vice versa as qNet decreases. The bigger the qNet value the
safer the system is and the harder it is to induce EAD.

For APD90, inmost cases there is a strong negative correlation
with IKr reduction threshold (close to−1) as expected, indicating
the longer the APD the lower the repolarization robustness
(i.e., the closer to EAD) and vice versa (Table 4). However, this
trend reverses completely for some drugs like verapamil and
mexiletine, where the correlation is positive (Table 4), suggesting
the longer the APD90 the higher the repolarization robustness
(the further away from EAD). This is contradictory to the
general perception that longer APD90 (and QTc) signals a higher
EAD/TdP liability. These unexpected relationships between APD
and EAD can be seen more clearly in Figure 6, where the AP
traces before and after the perturbation are shown. As can be
seen from Figure 6A (left panel), using APD90 as a metric a cell
under mexiletine at 1x Cmax seems safer (APD less prolonged)
than at 10x Cmax, while qNet suggests otherwise (1x Cmax
is more dangerous due to a smaller qNet value). When the
same perturbation was applied (95% IKr reduction), the cell
with 1x Cmax of mexiletine but not 10x, generated an EAD
(Figure 6A right panel), indicating the cell with lower mexiletine
concentration is actually closer to EAD generation, consistent
with the prediction of qNet but not APD90. The same pattern
can be seen in Figure 6B, where verapamil at 1x Cmax is shown
to be closer to EAD than at 3x Cmax through perturbation assays
(right panel), contradictory to the prediction using APD90 but
not qNet (left panel). This pattern holds true when comparing
ranolazine and cisapride as compared in Figure 3. As described
earlier, a cell under ranolazine has a longer APD90 (indicating
higher risk) and also a higher qNet value (indicating lower risk)
than cisapride at 25x Cmax (Figure 6C left panel). An added
perturbation of 75% IKr reduction will trigger an EAD with
cisapride but not ranolazine (Figure 6C right panel), supporting
the prediction of qNet but not APD90. Note that here we used
25x Cmax tomatch the concentrations used in Figure 3.When 1x
Cmax was used, the same pattern was seen for the two drugs (see
Supplemental Figure 5). This suggests under most circumstances
qNet is a better metric than APD90 in marking the repolarization
robustness to added perturbation of IKr reduction.

Finally, cqInward does not correlate well with robustness
against EAD generation, measured as IKr reduction threshold

TABLE 4 | Correlation (using pearson method) between qNet, APD90 and

cqInward and IKr reduction threshold for the 11 drugs (diltiazem is not included

because EADs could not be induced for the highest IKr reduction tested 99.99%)

for a CL of 2,000 ms across all doses from 0.5 to 25x Cmax. Simulations where

the IKr reduction threshold is 0 (EADs occur without added IKr reduction, as for

quinidine ≥ 2.3x Cmax) and results where the IKr reduction threshold could not be

calculated (the maximum IKr reduction tested, 99.99%, did not trigger an EAD, as

for diltiazem at all Cmax, verapamil ≥ 1.7x Cmax, and mexiletine ≥ 3.8x Cmax)

were excluded.

Drug Correlation with IKr reduction threshold

qNet APD90 cqInward

Quinidine 0.996 −0.994 −0.197

Bepridil 0.948 −0.992 0.432

Sotalol 0.979 −0.992 −0.971

Dofetilide 0.96 −0.993 −1

Cisapride 0.988 −0.996 −0.994

Ondansetron 0.997 −0.999 −0.595

Terfenadine 0.968 −0.944 0.804

Chlorpromazine 0.995 −1 0.895

Ranolazine 0.87 −0.992 0.961

Verapamil 0.977 0.998 −0.991

Mexiletine 0.974 0.989 −0.983

(Table 4), despite a good performance (next to only qNet)
on separating the risk categories for the training compounds
(Figure 4). This suggests cqInward does not indicate the
repolarization robustness to a perturbation of hERG channel
density decrease. Whether cqInward is correlated with the
robustness to another perturbation, or its separating power on
the 12 training drugs is a non-physiological artifact, remains to be
investigated. If the latter this highlights the importance to assess
a metric in not only a pre-defined drug classification system,
but also a physiological framework to quantitatively evaluate the
correlation between the metric and EAD.

DISCUSSION

In this study we present an optimized version of the ORd
model (O’Hara et al., 2011), which incorporates a dynamic
representation of IKr to allow modeling of drug-IKr channel
interactions (Li et al., 2017) as well as providing a better fit to
experimental data in both control and drug blocking conditions
by rescaling ionic current conductances. Most notably, INaL
current is increased compared to the original model. We also
demonstrate that our optimizedmodel, used in combination with
a mechanistic net charge metric (qNet), enables good separation
of 12 CiPA training compounds into their respective risk
categories over a range of drug concentrations and pacing rates.
Furthermore, we show that this is because qNet is correlated with
a system’s repolarization robustness to external perturbation of
hERG channel density decrease, or IKr maximum conductance
reduction.

Optimization of the O’Hara Rudy Model
To optimize the model we rescaled ionic current conductances
in the model presented by Li et al. (2017). We demonstrate in
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Figure 2 that recalibration of the model conductances leads to
very little changes in the AP in control conditions across a range
of pacing frequencies. It did however shift the effect of some
of the different currents in the cardiac cell model, most notably
increasing the role of INaL in contributing to AP. A recent study
also optimized the ORdmodel to fit various LQTS profiles (Mann
et al., 2016). Mann et al. present an optimized version of the
ORd model by scaling the conductances of IKs (by 5.75), IKr (by
1.00), ICaL (by 2.01), INaL (by 1.00), INaCa (by 2.95), and INaK
(by 9.12). The scaling factors are different to the ones observed
in our model: IKs is increased in both models although ours
is increased by a smaller amount 1.87, in their model IKr is
unchanged while it is slightly increased in our model, ICaL is
increased significantly in their model but only very slightly in
ours and INaL is unchanged in their model while it is scaled by
2.661 in our model. The differences in INaL can be explained
by the differences in context of use of the model: Mann et al.
investigate the effects of increased INaL (LQTS3) as opposed to
drug block of INaL, as in this study. Furthermore, a key difference
between our model optimization process and Mann et al. is that
we used human cardiomyocyte experimental data with various
channel blockers, while they used clinical LQTS data. However,
one of their findings was that the ORd model over predicts the
effect of IKr block (50% IKr block produced a 42% increase in
APD90 as opposed to the 16.5% observed clinically), which is
concurrent with our findings. An awareness of this property of
the ORd model is important as the model is often considered
a consensus gold standard model for simulating drug effects
on cardiac cells, and properties such as the over prediction of
block of IKr may lead to inaccurate predictions of drug effects
on cardiac electrophysiology. Our manuscript further highlights
this point and provides an alternative model with improved
balance of the effect of the different ionic currents in drug block
conditions.

Performance of the qNet Metric Using the
Optimized Model
Using pharmacology data for the 12 CiPA training compounds
(Li et al., 2017), we assessed the suitability of a range of standard
metrics based on AP morphology properties, as well as the
recently published cqInward metric (Li et al., 2017) and our
new qNet metric. We demonstrated that the commonly used
AP-based metrics are poor indicators of TdP risk and found
that our qNet metric allowed best separation of the CiPA
training compounds into their risk categories. Our new metric
outperformed the cqInward metric presented in Li et al. which
may be a consequence of optimized channel conductances to
better quantify the block effects of individual currents.

Our optimized IKr-dyn ORd model has two important
features compared to the original ORd model: incorporation
of modeling drug-IKr interaction kinetics based on dynamic
hERG binding data (Li et al., 2017) and better characterization
of individual currents’ role in AP based on channel blocking
data. We demonstrate the importance of simulating drug-IKr
dynamics and accurate drug block conditions by providing
rationale for misclassification of compounds when either one
of the features were removed during TdP risk classification

(Figure 5). This highlights the need for more precise model
representation to simulate drug effects and stratify TdP risk
levels. Additional human cardiomyocyte data may help to further
refine this model.

qNet Correlates with the System’s
Robustness against EADS
Based on ideas from non-linear dynamic theory and studies
demonstrating mechanisms of EAD generation (Guo et al., 2007;
Weiss et al., 2010; Xie et al., 2010; Chang et al., 2013; Kurata et al.,
2017), we established a theoretical framework to quantitatively
evaluate the physiological consequences of the change of the
qNet (and in principle any) metric. A key concept here is the
system robustness (Kurata et al., 2008), which is defined as the
level of a specific perturbation the system can tolerate without a
qualitative change of stability (e.g., emergence or annihilation of
oscillations). We applied that concept here using IKr maximum
conductance reduction as a perturbation. Note that in our
model all drugs’ hERG/IKr block is modeled as binding to
different channel states without changing the IKr conductance.
Thus the IKr conductance decrease applied here reflects extra
pro-EAD perturbations independent of each drug’s direct ion
channel block activities, for example inter-subject variability
(hERG channel density variation due to genetic background),
intra-subject variability (regional difference in hERG channel
density), chronic drug effects (to block hERG maturation), or
drug-drug interaction. We found that qNet is correlated with
the cell’s repolarizing robustness to the perturbation of IKr
conductance reduction. When qNet increases, the cell’s IKr
reduction threshold also increases, meaning the cell is moving
away from EAD and needs a more severe perturbation of IKr
conductance reduction to trigger an EAD. The opposite happens
when qNet decreases. This positive correlation is consistent
across all the compounds tested in this study. In contrast, APD90
does not show a consistent correlation with the repolarization
robustness across all the drugs, suggesting for some drugs
(mainly compounds with balanced inward and outward current
blocking activities) APD90 may not be a good indicator of
distance from EAD.

The concept of robustness to pro-EAD perturbations is highly
related to that of repolarization reserve, developed by Roden
(1998) to describe the redundant cellular mechanisms to effect
orderly and rapid repolarization, which can be disrupted by an
added stressor (perturbation), resulting in APD prolongation
and/or EAD. We chose to use the term robustness instead
of repolarization reserve because the latter has been widely
used to describe a cell’s repolarization mechanism against
both delayed repolarization (APD prolongation) and voltage
oscillation (EAD), which we show in Figure 6 are not necessarily
correlated with each other. In contrast, robustness of a system,
a concept borrowed from non-linear dynamic theory (Kurata
et al., 2008), is directly related to emergence or annihilation
of oscillations (EADs) in the presence of perturbations. There
are different types of perturbations that could be used to test
a system’s robustness, for instance an applied bias current
(Gray and Huelsing, 2008; Kurata et al., 2008), or an increased
conductance for ICaL and/or INaL. We chose IKr conductance

Frontiers in Physiology | www.frontiersin.org 11 August 2017 | Volume 8 | Article 616

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Dutta et al. In silico Proarrhythmia Risk Assessment

FIGURE 6 | AP traces for mexiletine (A) at 1x Cmax (black solid line) and 10x Cmax (gray dashed line) without (left panel) and with 95% IKr reduction (right panel);

verapamil (B) at 1x Cmax (black solid line) and 3x Cmax (gray dashed line) without (left panel) and with 98% IKr reduction (right panel); and ranolazine (black solid line)

and cisapride (dashed gray line) (C) at 25x Cmax without (left panel) and with 75% IKr reduction (right panel) for a CL of 2,000 ms. Corresponding APD90 (ms) and

qNet (µC/µF) values are reported in black for mexiletine 1x Cmax, verapamil 1x Cmax and ranolazine 25x Cmax and in gray for mexiletine 10x Cmax, verapamil 3x

Cmax and cisapride 25x Cmax. Note the IKr reduction (simulated by scaling the IKr maximum conductance) is applied in addition to the drug block effect and is used

to assess the system’s robustness against EADs (see Results section).

reduction as a perturbation because it is independent of the
direct drug effects (the dynamic IKr model allows us to model
IKr blockers without changing IKr conductance), and also it
naturally reflectsmany physiological and pharmacological factors
(hERG channel density variability, hERG channel trafficking
block, etc.). It is possible that using different perturbations the
same system can show different robustness against EADs. For
example, the second best metric cqInward in terms of risk

category separation does not correlate with the robustness to IKr
conductance reduction, but could potentially correlate with the
robustness to other perturbations. We also note that even qNet
is not perfectly correlated with the robustness to IKr reduction.
The correlation between qNet and IKr reduction threshold was
checked only for 12 drugs at selected concentrations (0.5–25x
Cmax), and it is not known if the strong correlation holds true
beyond the drugs and concentrations tested. Even within the
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concentrations tested, some drugs (for instance ranolazine) do
not have a consistent correlation across all the concentrations
(Supplemental Figure 2). This suggests it may be beneficial to
use the repolarization robustness (for instance IKr reduction
threshold) directly as a metric so that it has clear and direct
physiological meaning. However, this method is much more
computationally intensive: for each drug at each concentration,
the computing time for the IKr reduction threshold is more than
10 times that for qNet, as multiple levels of perturbations are
needed to find the threshold. In addition, it is hard to define
the metric if different perturbations to the same system lead to
different thresholds (robustness). Thus, using a highly correlated
surrogate metric qNet is a practical choice currently.

Limitations and Ongoing Work
While the model and metric combination presented here have
been able to separate all the CiPA training compounds into their
respective TdP risk categories, we have yet to test this approach
on the CiPA validation compounds or any compounds that were
not used in the training of the model, which would provide an
independent validation of this framework. A key limitation of this
approach that prevents an independent validation study is that
we have not provided thresholds for the qNet metric, which could
be used to place an unknown compound within a specific TdP
risk category. Instead we would only be able to group together
compounds which would be expected to pose similar TdP risk.

As suggested in previous studies the sodium potassium pump
(Lancaster and Sobie, 2016; Britton et al., 2017) and the sodium
calcium exchanger (Armoundas et al., 2003; Nagy et al., 2004)
play an important role in EAD generation. Simulations of
hypothetical drugs by Lancaster and Sobie (2016) show that both
the sodium potassium pump and sodium calcium exchanger
were ranked as having the greatest influence on TdP risk, above
IKs, IK1, and Ito (but excluding IKr, ICaL, and INa). Further
experiments and simulations are needed to assess how CiPA
drugs affect these currents and whether they should be directly
taken into account in our net current calculation to improve TdP
risk prediction.

Another key factor to consider is that while we have
demonstrated the success of our approach using gold standard
manual patch clamp data. At least in a pre-regulatory setting, the
CiPA framework will likely rely on the use of high-throughput
ion channel screening data acquired from different platforms
routinely used within the pharmaceutical industry. We would
therefore need to further refine this model to fit to high-
throughput system generated data and demonstrate that the
model and metric combination identified perform equally well
in this case. Furthermore, dynamic modeling of other channels
(such as ICaL) may be needed as the project moves forward;
however, at this stage detailed kinetic drug block data for
other channels is not available, nor are the protocols to extract
the necessary parameters. A priority of CiPA is to keep the
framework simple and constrain the cost of data generation;
therefore, we use only IC50 data for other channels as, based

on our current knowledge, they provide enough information
to correctly separate drugs into their TdP risk categories.
Additionally, calcium transient properties in the ORd model
differ from other models, such as the Grandi et al. model
(Grandi et al., 2010); therefore, changes to the calcium transient
could improve prediction of TdP risk. In fact, Cummins et al.
incorporated the Grandi et al. model [along with the ORd and
the ten Tusscher et al. model (ten Tusscher and Panfilov, 2006)]
in their TdP risk classification and found diastolic intracellular
calcium and APD to be good markers of TdP risk (Cummins
et al., 2014). However, as mentioned earlier in this study
Cummins et al. define a binary TdP risk stratification that does
not follow the same categorization as defined by CiPA.

A number of different avenues for further improvement
of the model and TdP risk prediction approach presented
here are currently being explored. We are examining the
use of thresholds for TdP risk level classification, as well as
incorporating both variability and uncertainty within the model
predictions. In conclusion, in this manuscript we present an
optimized version of the IKr-dyn ORd model presented in
Li et al. (2017) that is able to accurately separate the CiPA
training compounds into their respective risk categories and
correlates well with the system’s robustness against EADs. An
independent validation of this approach is limited, but more
ongoing work will see further refinement of this model and
increasing its suitability to be used routinely within the CiPA
paradigm.
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