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Disclaimer 

This presentation is not an official US Food and 
Drug Administration guidance or policy statement. 
No official support or endorsement by the US FDA 
is intended or should be inferred.  



3 

In Silico Working Group 

- Select a consensus base cardiomyocyte model for CiPA  

- The base model is to be further optimized based on 
experimental data of drug effects on selected human 
cardiac currents 

- A set of 12 training drugs classified into 3 torsade de 
pointes (TdP) risk categories (high, intermediate and 
low) is used to calibrate the model and develop the 
metric; Another set of 16 drugs for independent 
validation 

In silico Reconstruction 
of Human Ventricular 

Cardiomyocyte 
Electrophysiology 

Goals: Integrate in vitro data into a computational model of 
human ventricular myocyte and identify a mechanistic metric 
that can quantify the relative risk of inducing EAD/TdP 
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The Selection of the Base Model for 
CiPA 

• Cardiac Modeling Experts Meeting (July 2013) held at FDA to 
kick off CiPA In Silico Workstream 
– Modeling experts from academics, industry, FDA – hosted by HESI 

• Affirmed the use of single cell vs. more complex 2D or 3D 
models 
– Simple but experimentally determined mechanistic representation of 

electrophysiology and pharmacology 
– Concerns about the degree of uncertainty generated by the large number of 

free parameters in a more complex model 
– Interest in quantitative metric(s) that could assign a level of risk vs. 

simulating proarrhythmia  
• Recommended O’Hara Rudy (ORd) human ventricular myocyte 

model as most tightly linked to human ventricular cell data 
• Identified the probable need to consider dynamic drug-channel 

interactions for hERG (and other channels) 
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Improving the ORd Model for CiPA 

• Making the IKr/hERG component temperature 
dependent 

• Modeling dynamic drug-hERG interactions 
rather than using simple IC50s 

• Optimizing model parameters based on 
experimentally recorded drug effects on human 
ventricular myocytes 
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Development of a Temperature Sensitive 
hERG Model 

• Because O’Hara-Rudy model operates at physiological temperature, while 
industry-generated hERG data are often obtained at room temperature, a 
dynamic, temperature-sensitive hERG model is required 

• We developed a modified hERG model that can reproduce temperature-
induced changes in major channel gating processes 
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Examples of Temperature Effects 

• Our model was able to reproduce the experimentally observed left shift of 
steady state activation curve (A) 

• And a right shift of steady state inactivation curve (B) 

Experimental data (circles) from Vandenberg et al.  2006; Simulation (lines) from Li et al. 2016. 
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Modeling Dynamic drug-hERG Interactions 

• Because the same drug may show different block potency under 
different conditions (i.e. heart rate), a novel model was developed to 
capture this dynamic drug-hERG interaction 

• This model can distinguish between hERG blockers with similar IC50s 
but different TdP liabilities because of some drugs’ tendency to be 
trapped in closed hERG channel 

Li Z et al. Improving the In Silico Assessment of Proarrhythmia Risk by Combining hERG-Drug Binding Kinetics and Multi-
channel Pharmacology. Circulation: Arrhythmia & Electrophysiology. 2017;10:e004628 
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Modeling Dynamic drug-hERG Interactions 

Li Z et al. Circulation: Arrhythmia & Electrophysiology. 2017;10:e004628 

O = Open 
C = Closed 
I = Inactivated 

Channel gating Drug binding 

• The model allows drugs to be trapped in closed-bound state with varying 
propensities, a realistic feature often missing from published hERG 
models 

• Modeling shows that High TdP Risk compounds tend to have a higher 
propensity to be trapped within hERG channel during repolarization 
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Replacing the IKr component of ORd with the 
Dynamic hERG Model 

O'Hara T, Virag L, Varro A, & Rudy Y (2011) PLoS Comput Biol 7(5):e1002061. 

IKr-dyn ORd Model 

Li Z et al. Circulation: Arrhythmia & Electrophysiology. 2017;10:e004628 
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IKr-dyn ORd Model vs ORd Model 

Circles: experimental 
Lines: Simulation (two 
models superimposed) 

• Under control conditions, both models fit experimental rate-dependent APD well 
• In the presence of some drugs, IKr-dyn ORd model made the fitting worse 

APD30 

APD50 

APD70 

APD90 

Control Condition (no drug) 1 µM nisoldipine (ICaL blocker) 
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Further Optimization of IKr-dyn ORd 

• The conductance of five major ion currents (IKr, IK1, IKs, INaL, ICaL) are adjusted  
• Adjustment is based on APD rate dependence experimental data under control and 

drug block conditions in human cardiomyocytes (from O’Hara 2011) 
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Results of Optimization 
1 µM nisoldipine (ICaL blocker) 1 µM E4031 (IKr blocker) 

• For some drugs (nisoldipine), Optimized IKr-dyn ORd model (blue) reproduces data 
as faithfully as ORd (red) 

• For others (E4031), Optimized IKr-dyn ORd model (blue) fits experimental data even 
better than ORd 
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• The consensus cardiac model (ORd) was selected based on its 
tight link to human ventricular cell data 

• The choice of model complexity (1D vs 2D) and tissue/cell 
type is based on the assumption that the goal is to assign 
relative TdP risk, not to simulate TdP directly 

• IKr component of ORd was replaced by a Markov hERG model 
that captures temperature-dependent gating and drug-hERG 
dynamic interaction 

• Further optimization of the model improves the model’s 
ability to reproduce rate-dependent APD experimental data 
from human cardiomyocytes 

Summary 
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