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Drug-induced Torsade-de-Pointes (TdP) has been responsie for the withdrawal of

many drugs from the market and is therefore of major concernat global regulatory

agencies and the pharmaceutical industry. The Comprehengg in vitro Proarrhythmia

Assay (CiPA) was proposed to improve prediction of TdP riskising in silicomodels and

in vitro multi-channel pharmacology data as integral parts of thisnitiative. Previously,
we reported that combining dynamic interactions between dugs and the rapid delayed

recti er potassium current (IKr) with multi-channel pharmacology is important for TdP risk
classi cation, and we modi ed the original O'Hara Rudy venticular cell mathematical
model to include a Markov model of IKr to represent dynamic drg-IKr interactions

(IKr-dynamic ORd model). We also developed a novel metric &t could separate drugs

with different TdP liabilities at high concentrations baskon total electronic charge carried
by the major inward ionic currents during the action potendl. In this study, we further
optimized the IKr-dynamic ORd model by re ning model parameers using published

human cardiomyocyte experimental data under control and drg block conditions. Using

this optimized model and manual patch clamp data, we developd an updated version

of the metric that quanti es the net electronic charge cared by major inward and

outward ionic currents during the steady state action potetial, which could classify
the level of drug-induced TdP risk across a wide range of conentrations and pacing

rates. We also established a framework to quantitatively eluate a system's robustness

against the induction of early afterdepolarizations (EADsand demonstrated that the

new metric is correlated with the cell's robustness to the pp-EAD perturbation of IKr
conductance reduction. In summary, in this work we present a optimized model that

is more consistent with experimental data, an improved meit that can classify drugs

at concentrations both near and higher than clinical exposie, and a physiological

framework to check the relationship between a metric and EADThese ndings provide

a solid foundation for usingin silico models for the regulatory assessment of TdP risk
under the CiPA paradigm.

Keywords: Torsade-de-Pointes (TdP), Comprehensive in vitro Proarrhythmia Assay (CiPA), rapid delayed recti er
potassium current (IKr), in silico cardiac cell model, drug block, proarrythmia risk, model optimi zation
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INTRODUCTION with multi-channel pharmacology data. This IKr-dynamic ORd
model (hereinafter referred to as the original IKr-dyn ORd
Drug-induced Torsade-de-Pointes (TdP) is a lethal arrimyh  model) was calibrated based on the original ORd model so
that has caused removal of several drugs from the markehat it can reproduce experimentally recorded adult human lef
(Gintant, 200§. The current cardiac safety paradigm (described,entricular cardiomyocyte action potential (AP) morphologyda
by the ICH E14 and S7B guidelines) focuses on two markeigte dependency under control (drug-free) conditions. Hoere
to assess TdP riskin vitro block of the hERG (human this model calibration process in our previous work did not
Ether-a-go-go-Related Gene) channel (representing the kapidinclude experimental AP changes under the in uence of di eren
activating delayed recti er potassium current, or IKr), and channel blocking drugs. This may negatively a ect the madel
prolongation of the QTc interval in clinical studieS¢ger et al., predictive power as this model is intended for simulating drug
2014 However, while eliminating the incidence of TdP in e ects under channel b|0cking conditions.
marketed drugs, this testing regime primarily aims at detegti  |n this study we further optimized the original IKr-dyn
delayed ventricular repolarization rather than the cliniemd  ORd model by adjusting channel conductance values of major
point TdP, and may be assigning proarrhythmia liability tojonic currents according to human ventricular cardiomytey
drugs that could in fact be saf&gger et al., 20).4Therefore, experimental data in the presence and absence of various drugs
the Comprehensiven vitro Proarrhythmia Assay (CiPA) was with di erent channel blocking activities. We show that this
proposed as a new regulatory paradigm that assesses drug Telitimization procedure allowed the model (hereinafter redeir
risk by combining measurements of drug e ects on multipleto as optimized IKr-dyn ORd model) to quantify more accurately
cardiac ionic currentsn vitro with in silicomodeling of drug the impact of each individual current on the AP. We then
e ects onthe ventricular myocytesager etal., 20).4rhe O'Hara  screened a series of published and novel metrics computed by
Rudy cardiac cell model (ORd{XHara et al., 201)lwas chosen this model based on their capability of stratifying CiPA tiaig
as the consensus basesilicomodel and a set of 28 drugs with compounds into their corresponding TdP risk categories using
known levels of clinical TdP risk (high, intermediate, lowhe)  drug-IKr binding kinetics and multi-channel pharmacologgiz
were identi ed for the development and evaluation of the CiPAcgllected earlier through manual patch clamp systems( al.,
paradigm Colatsky et al., 2016; Fermini et al., 2NTEhe three  2017. The best metric identi ed to date is based on drug-induced
TdP risk Categories were aSSigned by a Clinical TranS'atithangeS to the net Charge carried by jonic currents (qutm
Working Group comprised of clinical cardiologists, safetythe AP, which can stratify the 12 CiPA training drugs into ¢fer
pharmacologists, and clinical electrophysiologists adogrdo  Tdp risk levels across various conditions. We also show that
published and publically available data and expert opinion. Thehe increased predictive power of this metric is mechanifiica
28 CiPA drugs were separated into a training set of 12 compoundgked to the incorporation of IKr-drug binding dynamics and
to be used for calibration of thie silicomodel and the remaining  the improved representation of the block e ects of individual
16 compounds are to be used later for validating the model. BotByrrents, two important features of the optimized IKr-dyn ORd
the training and validation compound sets comprise drugs thagnodel. Finally, we developed a framework to evaluate a cell's
cover the full range of TdP risk categories and demonstrated  robustness against EAD generation, and demonstrated thet th
electrophysiological pro les. new gNet metric is correlated with the system's repolarczati
Previous studies have presented computational frameworkgbustness to external pro-EAD perturbations that could reluc

to assess TdP riskVrams et al., 2011; Kramer et al., 2013/the membrane density of the hERG channel (IKr conductance).
Lancaster and Sobie, 2Q1l@ut their use within the CiPA

framework is limited due to their di ering TdP risk categose

from those de ned in CiPA. In addition, prior studies simukd METHODS

drug e ects using the half-maximal blocking concentration

(IC50) for dierent drugs, which assumes simple pore blockOptimization of the IKr-Dynamic ORd

of the ion channels and neglects any intricacies of drugModel

ion channel interactions that may be important factors inThe original IKr-dyn ORd model (described ihi et al., 2017
predicting relative TdP risk. The importance of incorporatingand Expanded Methods in the Supplemental Material) was
a kinetic representation of drug-ion channel interactionash further modi ed (optimized IKr-dyn ORd) by scaling ve ionic
been demonstrated in previous publicatiorisi (Veroli et al.,  current conductances [IKr, the slow recti er potassium cemt
2013, 2014; Li et al,, 2017n the Li et al. (2017)study we (IKs), inwardly rectifying potassium current (IK1), the lge
recently reported the development of a novel IKr dynamiccalcium current (ICaL) and the late sodium current (INaL)]
model that can capture drug-channel dynamic interactioms] & so that the model provides a good t to published APD rate
the integration of this IKr model into the ORd cardiac model dependence experimental data for control and ve channel
blockers O'Hara et al., 2011 The optimization was performed
Abbreviations:CiPA, Comprehensivia vitro proarrhythmia assay; TdP, Torsade- using the model parameterization algorithm describediiet al.
de-Pointes; ORd, O'Hara Rudy dynamic cell model{ara etal., 200LIKr-dyn (5014 Brie y, an initial set of scaling factors was de ned within
ORd, ORd model with dynamic IKr; Inet, net current (sum of currentslC INaL, . .

IKr, IKs, IK1, Ito); qNet, charge passed by Inet from the beggrto the end of the a certain range (be.tween 0',001. and 9) and .thell’ goodness of
AP beat (same for qCal and ICaL, qNaL and INaL...); cqinwaragb in charge ~ t Was assessed using an objective cost function de ned as the
passed by ICaL and INaL; Cmax, free maximum plasma clinical drug exposuresweighted sum of the squared errors between model simulation
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and experimental measurements. The set of scaling facters thseparation between risk categories in our previous repbit (
underwent iterative changes (i.e., mutation and recomtiamg et al., 201). In addition, we considered a new metric (gNet)
to create new generations of parameters and this process wealculated as the net charge constituting (the integral @aar
continued until the convergence criterion was met (when theunder the curve of) the net current (Inet) from the beginnitw
change in the minimum error of the new parameters is less thathe end of the simulated beat (de ned as In@tiCaL C INaL C

5% over the last 30 generations). The experimental data wsed fIKr C IKs C IK1 C Ito). The currents making up Inet within our
tting were taken from Figure 8 of the ORd model papé¥'Hara  study play an important role in modulating arrhythmic risk and

et al., 201)and comprise APD rate dependence data for controhave been chosen based on input from pharmaceutical company
and 5 drug blocking conditions: @M E-4031 (70% IKr block), scientists and safety pharmacology experts as the main dsrren
1 mM HMR-1556 (90% IKs block), @M nisoldipine (90% ICaL of interest within the CiPA paradigm, as outlinedfkiermini et al.
block), 100mM BaCl2 (90% IK1 block), 16M mexiletine (54% (2016)

INaL, 9% IKr, and 20% ICaL block). The simulated percentage To assess the robustness of a cell against EAD generation,
of block for all drugs was kept the same as in the ORd modete simulated an added perturbation by reducing the maximum
paper O'Hara et al., 201)] apart from mexiletine, which used conductance of IKr and reporting the minimum IKr reduction
new pharmacology data from manual patch clamp systems ateded to trigger an EAD. Simulations were run for varying
physiological temperatures(umb et al., 2016 The algorithm  degrees of IKr conductance reduction (using a binary search
was run using in-house developed R scrifits{ore Team, 2034 algorithm) at a CL of 2,000 ms with a precision of 0.01%.
and C programs using the Snow, Rmpi and deSolve packageer each IKr reduction tested, EADs were de ned as having a
(Isoda solver with a 1 relative and absolute tolerance)(,  positive di erential (dV/dt) during the plateau phase of the AP
2002; Soetaert et al., 2010; Tierney et al., poithe FDA High  (between APD30 and APD90) after 100 beats. The cell model

Performance Computer (HPC) with 160 cores. was pulsed for a 100 beats before checking for EADs to allow the
) ) _ _ system to reach quasi-steady state, asimta et al. (2017)The
Simulation Protocol for Metric Evaluation minimum IKr conductance reduction needed to trigger an EAD

All simulations were run from control steady state conditto was named IKr reduction threshold, which re ects the systeem
(after 1,000 beats) at varying cycle lengths (CLs) 1,00002, repolarization robustness against, or distance from, EADs. To
and 4,000 ms and stimulus of80 mA/mF for 0.5 ms (as in the assess the relationship between the metric and the repatamiz
original model). Block of ion channels at various concetitias  robustness, we calculated the correlation coe cients ifgsihe
were simulated and run for another 1,000 beats to reach pearson method) between the metric at steady state aftef1,00
new steady state with drug. The last two beats were analyzéeats (without added IKr reduction) and the IKr reduction
to check for alternans, which was observed in the presence tifreshold for each drug across a series of concentratiofs-{0
early afterdepolarizations (EADs), de ned as having a pesiti 25x Cmax). Situations where no IKr reduction threshold could
derivative during the repolarization phase of the AP. Thebe calculated (no EADs could be induced for the highest IKr
pharmacology data for the 12 CiPA training compounds (thereduction tested) or IKr reduction threshold is 0 (an EAD
full list and their corresponding risk categories can be fdum  occurred without any added perturbation) were excluded from
Supplemental Table 1) were the same as in our previous repdtie correlation calculation.
(Lietal., 201y, where drug-IKr binding kinetic parameters were
estimated using ain vitro IKr dynamic protocol and IC50/Hill  Classi cation Methods
coe cients based onCrumb et al. (2016)were used for the To assess the ability of the metrics to identify each drug's
remaining channels [the peak sodium current (INa), INaL,LCa TdP risk level, we performed a proportional odds logistic
IK1, IKs and transient outward potassium current (Ito); allet regression classi cation and a leave-one-out validatias,in
parameters can be found in the Supplemental Tables 2 and 3{lirams et al. (2011)If EADs were observed, the metric value
Simulations were run for a range of drug concentrationsnfro at the concentration prior to EAD generation was used for the
0.5x up to 25x free maximum plasma clinical drug exposureslassi cation. We used the R Irm function from the rms package
(Cmax). Simulations were run in R and C using the deSolvéhttps://CRAN.R-project.org/package=rms) and calculatbd t
package$oetaert et al., 20).0 classi cation training error for each metric as followsetmean
We assessed a range of standard metrics as also considefackoss 12 drugs) of the absolute error (di erence between
in Mirams et al. (2011)Lancaster and Sobie (20iGpsting predicted and known risk categories), with the risk categ®ri
membrane potential (resting Vm), maximum upstroke velocityde ned as 1D low risk, 2D intermediate risk and ® high risk.
(dv/dtmax), peak membrane potential (peak Vm), APD atThe proportional odds logistic regression model is a regogssi
50% of the amplitude (APD50), APD at 90% of the amplitudemodel for ordinal dependent variables, and accounts for the
(APD90), APD triangulation (APDtri) de ned as APD90- ordering by using cumulative probabilities de ned as the edd
APD50, diastolic intracellular calcium concentration €];) of (Y i) D P(Y i)/(1 P(Y i) for each risk category
(diastolic Ca), peak [G&]; (peak Ca), calcium transient duration i, where Y is the variable that represents a drug's risk cayego
at 50% (CaD50) and 90% (CaD90) of the amplitude, calciumand P(X) is the probability of X. The function uses maximum
transient triangulation (Catri) de ned as CaD90-CaD50vesll  likelihood estimates to calculate the probability of eacligr
as the cqlnward metric that quanti es the change in the ambunbeing a member of each risk category, and the drug is assigned
of charge carried by INaL and ICaL, which demonstrated goodo the risk category corresponding to its highest probahiltye
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then performed a leave-one-out validation by removing onggdr model compared to the original IKr-dyn ORd model ( tting
from the data set and then predicting its risk category based oerror 30.81 vs. 72.33). The main improvements in the quality
the classi cation of the remaining drugs. This was performedof t to the experimental data are observed for drug blocking
in turn for each drug within the data set and its leave-ond-ou conditions, especially with mexiletine (INaL blocker) and E
prediction error was calculated the same way as the training031 (IKr blocker) Figures 1B,Erespectively). In the case of
error. mexiletine, a reduction in the tting error from 91.09 (oriigal
IKr-dyn ORd model) to 18.36 (optimized IKr-dyn ORd model)
was achievedT@ble 2). Figure 1B shows that, with the original
RESULTS IKr-dyn ORd model, the simulated APD prolongation with

Optimized IKr-dyn ORd Model mexiletine is signi cantly longer than experimental data. A
The optimized IKr-dyn ORd model was built by scaling the Similar pattern can be seen for the IKr blocker E-403al{le 2
conductance of the main ion currents (IKr, IK1, IKs, INaL,dc) ~ and Figure 1B. Due to the opposite roles of INaL and IKr in
of the original IKr-dyn ORd model (presented i et al., 201y  Prolonging AP (Johannesen et al., 21 this suggests that block
to t the APD rate dependence experimental data in controlOf INaL is underestimated and that of IKr is overestimated in
and drug block conditions fromD'Hara et al. (2011)The set the original IKr-dyn ORd model. The optimized model corrected
of scaling factors that gives the best t for the optimized rebd these inaccuracies with better tting to the experimentataja
is as follows: scaling IKr by 1.013, IKs by 1.870, IK1 by 1.69%hich is important for TdP risk assessment as it is known
ICaL by 1.007, and INaL by 2.661, as summarizedable 1 that INaL block plays an important role in counteracting pro-
A comparison of the simulation results from both the original &Thythmic APD prolongation of IKr block Qrth et al., 2006;
and optimized models to the experimental data is shown iohannesen et al., 2016
Figure 1and the corresponding sum of squares errors (between To further understand the contribution of various ionic
simulation and experimental data) are shownTable 2 Sum currents to AP prole after the optimization process, we
of squares error for the original ORd model as presented i§ompared the simulated AP traces and the ionic currents
their paper O'Hara et al., 201)lare also shown ifTable 2for ~ OVer the time course of the steady state AP between the
comparison purposes. We see that although for control and sonf¢/iginal and our optimized IKr-dyn ORd model at di erent
current blocking conditions the original IKr-dyn ORd modehh cycle lengths. As described earlier in this section all @& th
errors similar to the original ORd model, for other conditisn Current conductances are increased in the optimized IKr-dyn
the errors were worsened (IK1 and ICaL blocking experimentsORd model Table J). However, the AP shapes from both
resulting in an average error bigger than the original ORd elod models under control conditions are very similar, as shown in
(72.33 vs. 57.77). However, the discrepancy between siongat Figure 2A This is consistent with the fact that both models t
and experiments was signi cantly reduced in the new optimizedh€ control AP morphology parameter§igure 1A) reasonably
IKr-dyn ORd model. well. On the other hand, while only a small change in current
As can be seen ifiigure 1A, under control conditions both amplitude is observed for ICalF{gure 2Q, which only has
the original IKr-dyn ORd and optimized IKr-dyn ORd models & 0.7% change in conductanc&able 1), clear dierences are
display similar behavior. Although for control data pointget observed for all other currents (IKr, INaL, IKs and IK1) with
optimized IKr-dyn ORd model tting is slightly worse than the biggestchanges occurring for INaL (conductance issased
the original IKr-dyn ORd model ( tting error 22.63 vs. 18.82 by 166.1% between the optimized and original models as shown
in Table 2, the average t across both control and all drugi” Table 1). This further demonstrates that INaL plays a bigger

block conditions is much better for the optimized IKr-dyn ORd r0|ed irl‘ the optimized model than the original IKr-dyn ORd
model.

Candidate Metrics
TABLE 1 | Conductance scaling factors for the original and optimizedkr-dynamic ~ We then investigated whether the optimized IKr-dyn ORd model
O'Hara-Rudy models (original and optimized IKr-dyn ORd): etent conductances could be used to stratify proarrhythmia risk levels. As a rst
of the rapid (IKr) and slow (IKs) recti er potassium current, \ardly rectifying step we explored the changes in AP and individual currents
potassium current (IK1), L-type calcium current (ICaL) andtsodium current . .
(INaL) in the model are multiplied by the corresponding scalj factor. induced by Fhree representatlve_ druQS _(One taken from each
one of the CiPA TdP risk categories), using pharmacology data

Scaled currents Original IKr-dyn Optimized IKr-dyn as used inLi et al. (2017) Since it is known that the subtle
ORd model ORd model balance between inward (such as INaL and ICalL) and outward
» 00 Lo1s (such as IKr, IKs, IKl,_ a!nd Ito) currents underlies the gextiem
’ ’ of EADs, a mechanistic precursor to TdR/ds et al., 1995;
IKs 10 1.870 Volders et al., 2000; Wu et al., 2002; Weiss et al., 2046
K1 L0 1.698 also examined the net current between inward and outward
ICal 10 1.007 currents (Inet) in addition to individual currentssigure 3shows
INaL 10 2661 simulations of AP, Inet, ICaL, INaL, IKr, IKs, IK1, and Itorfo
Note that the IKr conductance in the original IKr-dyn ORd model was scedl as described ranolazine (lOW I’iSk), Cisapride (intermediate riSk) and eldlfde
in Li et al. (2017) (high risk), for a CL of 2,000 ms and a dose of 25x Cmax
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FIGURE 1 | Steady state action potential duration (APD) rate dependey under the

- |APD90
I
150 ol P P 4 APD70
Pk Control| 150+ 10uM mexiletine| 140- 1M nisoldipine| - e
€
é’ D E F + APD30
= 1 model

1 mM nisoldipine [L-type calcium current ICaL blocKC)], 1 mM HMR-1556 [slow recti er potassium current IKs block(D)], 1 mM E-4031 [rapid recti er potassium
current IKr block (E)] and 100 mM BACL, [inwardly rectifying potassium current IK1 blocKF)] at varying cycle lengths (CLs) for the original dynamic IKri@ara Rudy
model (original IKr-dyn ORd; dashed lines) and the optimizedynamic IKr O'Hara Rudy model (optimized IKr-dyn ORd model; didl line). Experimental data mean
(symbol) and standard deviation (error bars) are fro@'Hara et al. (2011) Control (A) shows APD at 90% (APD90; lled circles), 70% (APD70; lled triagles), 50%
(APD50; lled squares) and 30% (APD30; plus sign) repolarigan. All other panels show APD90.

400+
— optimized IKr-dyn ORd model

- original IKr-dyn ORd model
3504

3004

250

200 100pM BaCl2
500 1000 1500 2000

conditions of control(A), 10 mM mexiletine [late sodium current INaL blockB)],

TABLE 2 | Sum of squares error (divided by 100) between experimentalcion
potential duration (APD) rate dependence mean data (fromdtire 8 in O'Hara

et al., 2011) and the original O'Hara Rudy model (original ORdpHara et al.,
2011), the original IKr-dyn ORdL(i et al., 2017) as well as the optimized IKr-dyn
ORd under different conditions: control, mexiletine (blds mainly INaL), HMR
1556 (blocks IKs), E-4031 (blocks IKr), BaCl2 (blocks IK1) andsoldipine (blocks
ICaL).

Experiment Sum of squares error
Original ORd Original IKr-dyn Optimized IKr-dyn
ORd ORd
Control 17.20 18.82 22.63
Mexiletine (INaL) 92.92* 91.09 18.36
HMR 1556 (IKs) 56.35 57.08 55.34
E4031 (IKr) 145.03 144.87 72.33
Bacl2 (IK1) 29.83 67.47 11.41
Nisoldipine (ICaL) 5.29 54.62 4.76
Average 57.77 72.33 30.81

*Error was calculated using the updated mexiletine IC50 dateCfumb et al., 2016); using
the block suggested in the ORd paper of 90% INaL block@'Hara et al., 2011), the sum
of squares error is of 38.48, changing the average error to 48.70.

concentration (25x Cmax) is used to highlight the potential
di erences between various risk levels. The amount of ebeitr
charge carried by each current is calculated as the area tinele
curve (AUC) of the individual current trace and is plotted fordt
in Figure 3C

We see inFigure 3A that all three drugs cause prolongation
of APD and the low risk drug, ranolazine, shows a greater
prolongation of APD compared to the intermediate risk drug,
cisapride (266.78 vs. 176 ms). The performance of APD90 as
a metric for all the drugs from 0.5 to 25x Cmax, can be seen
in Supplemental Figure 1. In fact, verapamil and ranolazine
(both low risk) display APDs greater than most intermediate
risk drugs over a wide range of doses. Therefore, the amount
of APD prolongation is not a good indicator of the TdP risk
of a drug, demonstrating the unsuitability of APD alone as a
marker for TdP risk. However, we notice that Indtigure 3B),
calculated as the sum of the ve main currents that modulate
the plateau phase of the action potential (ICaL, INaL, 1K1, IKr,
IKs, and Ito, shown inFigures 3D-|), does correlate with the
TdP risk category. As shown iRigure 3C the order of gNet
(charge carried by Inet integrated from the beginning to @mel
of the AP beat) is consistent with the rank order of TdP risk

using our optimized model. A slow pacing rate (CL 2,000 ms)evels for the three drugs. At the end of the CL, ranolazing ha
is used here because bradycardia is a known risk factor fér gNet of 0.061ImC/mF while cisapride and dofetilide have a

TdP (Kurita et al., 1992; Kallergis et al., 2)12and a high

gNet of 0.037mC/mF and 0.013nC/mF, respectively. A detailed
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FIGURE 2 | Action potential (APYA), INaL (B), ICaL (C), IKr (D), IKs (E), IK1 (F) traces under control conditions for the original IKr-dyn ORddashed line) and the
optimized IKr-dyn ORd (solid line) for CLs of 500 (red), 1,00@reen) and 2,000 (blue) ms.

examination of the individual current proles reveals why metric over a range of doses (0.5-25x Cmax) and a range of CLs
ranolazine caused the least amount of gNet decrease. Asishow (1,000, 2,000, and 4,000 ms) for the 12 CiPA training compsund
Figures 3D, Granolazine (green lines) caused a marked decrea3dnis error quanti es the mean (across the 12 CiPA drugs)
of the absolute amount of charge carried by IKr (gKr decresse di erence between known and predicted risk levels for each
0.119mC/mF) and INaL (qNaL decrease of 0.6C/mF) at the metric. We can see that across the full range of concentratio
end of the AP beat compared to control (black lines). Becausand all CLs the gNet metric shows the smallest classi cation
the outward current IKr and inward current INaL have opposite training error. Notably, the gNet metric shows a classi cati
directions, ranolazine-induced reduction (in absolutdéues) of  training error of O for concentrations greater than or equal
the two currents balanced each other and resulted in only 4x Cmax, meaning it consistently classi es each of the 12 CiPA
small change of the net charge at the end of the AP (gNetraining compounds into the correct TdP risk category. The
Figure 30. In contrast, dofetilide Figure 3D, red lines) and cqglnward metric performance is comparable to that of gNet at
cisapride Figure 3D, blue lines) caused a signi cant reduction of low pacing rates (4,000 ms) and high drug concentrationsofll
gKr (0.135 and 0.068C/mF respectively) through direct channel the other standard metrics we considered show training error
blocking, and a slight increase of gNaL through prolonged APDthat never come down to 0, which uctuate across the range of
These two e ects changed Inet in the same direction and workedoses.
together to decrease gNet signi cantly, with dofetilide seg The results presented Figure 4are consistent with the leave-
the biggest decrease due to more signi cant blocking of Nate  one-out validation described ifable 3 performed on a subset
that these drugs have some e ects on other currents (Ito, #idd, of the doses tested (1, 10, and 20x Cmax) for a CL of 2,000
IK1) as well, but those changes are relatively small and will n ms; the cglnward and gNet show the smallest prediction errors
change the rank order of gNet values signi cantly for theatr with values of 0.33 and 0.08 respectively at 20x Cmax. The othe
drugs tested here. However, these other currents may becomext best performing metrics are peak Vm with an error of
important for drugs that directly block them. For example, the0.42 and APD50, APD90 with errors of 0.5 at Cmax 20x. Of
e ects on ICaL may be critical in determining the gNet changenote, at 1x Cmax, gNet and APD90 all have the same prediction
and risk level for a calcium blocker. error of 0.17. This is because at lower concentrations (1. a9m
These initial promising results prompted us to calculate thighe e ects of each drug are harder to di erentiate due to there
new Inet-based metric, qNet, for all 12 CiPA training compdsn often being only subtle e ects on the AP morphology. However,
and systematically compare its capability of separating theeth the CiPA paradigm assumes that the assessment of TdP risk
TdP risk levels to a range of commonly tested metrics (dbedri may occur at any time during drug discovery and development,
in the Methods section). The risk categories, IC50 and IKreven prior to the time the clinical e ective drug concentratson
dynamic parameters for each drug are listed in Supplementare known with any certainty. In addition, the incidence of
Tables 1-3. Included in the comparison is also the cqlnwardlinical TdP is limited and not necessarily related strictty
metric, described in our previous study and de ned as thenormal (1x) clinical exposure (i.e., concomitant factorsympéay
normalized drug-induced change of the charge carried by tha role in expressing clinical TdP events). Therefore, we propose
inward currents INaL and ICaLLl( et al., 201). As shown in that a metric should be evaluated under multiple physiological
Figure 4, we calculated the classi cation training error for eachand pharmacological conditions. The overall evidence sstgge
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FIGURE 3 | Transmembrane voltage [Trans. voltag€A)], net current [Inet(B)], charge carried by Inet(C), INaL (D), Ito (E), ICaL (F), IKr (G), IKs (H), IK1 (1) traces for
control (black solid line), ranolazine, a low TdP risk drugrieen dashed line narrow spacing), cisapride, an intermedlie TdP risk drug (blue dashed line normal
spacing), and dofetilide, a high TdP risk drug (red dashechié wide spacing), at 25x Cmax for 2,000 ms CL using the optimizd IKr-dyn ORd. Charge carried by Inet,
INaL and IKr integrated from the beginning to the end of the AP k= (qX) are displayed on the graph.

that gNet is the best among all the metrics tested, becausetd shed light on possible mechanistic di erences among the slrug
has a training error of 0 across a wide range concentrationested, we used the best candidate metric gNet as a benchmark
(1-25x Cmax) at various pacing frequencies (2,000 and 4,0@dd compared the performance of the optimized IKr-dyn ORd
ms), and the lowest leave-one-out error at all concentretio model with model variations where each of the changes was
tested. removed in turn.Figure 5 shows computed gNet values for the
12 CiPA training drugs calculated over a range of drug doses

. . . from 0.5x to 25x Cmax when using the optimized IKr-dyn ORd
The Impact of IKr-Drug Binding Kinetics model Figure 5A), a model variation without incorporating

and Channel Conductance Optimization on the IKr dynamic model Figure 5B) and a model variation
Risk Level Strati cation incorporating the IKr dynamic model but without optimizing
Compared to the original ORd (i.e., the consensus base modehannel conductancesFigure 50. In line with results from

for CiPA), the optimized IKr-dyn ORd model presented in this Figure 4 and Table 3 the metric qNet shows clear separation
work has two important changes: the incorporation of a dynamidoetween the 3 TdP risk categories across the range of doses
IKr model to capture drug binding kineticd ( et al., 201Y, and  tested with the optimized IKr-dyn ORd modelFigure 5A);

an improved set of channel conductances to better represent tthowever, this is not the case for the other two model varizio
contribution of individual currents to APRigures 1, 2). Inorder ~ (Figures 5B,Q.

Frontiers in Physiology | www.frontiersin.org 7 August 2017 | Volume 8 | Article 616



Dutta et al. In silico Proarrhythmia Risk Assessment

FIGURE 4 | Classi cation training error for a range of metrics [restingnembrane potential (resting Vm), maximum upstroke velogit(dV/dtmax), peak membrane
potential (peak Vm), APD50, APD90, action potential (AP)angulation (APDtri), diastolic intracellular calcium ogentration ([ngc]i) (diastolic Ca), peak [C%C]i (peak
Ca), calcium transient duration at 50 and 90% of the amplituel (CaD50 and CaD90), calcium transient triangulation (C@trchange in amount of charge carried by
INaL and ICaL (cglnward) and the charge carried by Inet at the end the AP beat normalized to control (qNet)] for varying drugases (0.5-25x Cmax) and varying
CLs (1,000, 2,000, and 4,000 ms). Each box represents the mea (across 12 drugs) error (between predicted and known rislelels) for each metric at each
concentration (0.5-25X Cmax). A training error of O represes perfect separation between the risk categories.

The rst model variation we tested does not have the IKr2.6 nM see Supplementary Material), with a safety margin (IKr
dynamic model incorporated but instead uses simple IC50s t€C50/Cmax) of 3.8 Redfern et al., 2003which is close to that
represent channel blockigure 5B). Note that this model variant of the high risk drug dofetilide (IC50 4.87 nM and Cmax 2
has gone through a channel conductance optimization procesgM, safety margin 2.4) for example. So if IC50 data are used
similar to that presented in this article, as describedDintta  with an assumption of simple pore drug block, cisapride is
et al. (2016) so the dierence observed between this modelgrouped with the high risk drugs. However, when we consider
variant (Figure 5B) and the full optimized IKr-dyn ORd model the IKr-drug binding dynamic datal( et al., 201), cisapride,
(Figure 5A) is mainly due to the di erent representation of IKr but not high risk drugs like dofetilide, can rapidly dissdeifrom
block (dynamic vs. IC50s). FrorRigure 5B we can see that the hERG channel during diastolic intervals because it is not
there are two intermediate risk drugs that are not correctlytrapped in the closed channel. Consequently, cisapride has an
categorized: cisapride that is mixed with the high risk driaged  actual block potency lower than high risk drugs despite simila
chlorpromazine that is mixed with the low risk drugs. Cisagrid IKr IC50/Cmax ratio, which may explain why it belongs to the
is a potent and selective IKr blocker (IC50 10.1 nM and Cmajintermediate rather than high risk level. On the other hand,
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chlorpromazine is not a potent IKr blocker (safety margin 24.4than low risk drug. This demonstrates that including a dynami
similar to other low risk drugs) so when we look at IC50 only itrepresentation of IKr-ion channel interactions is importafiar

is classi ed closer to the low risk drugs. But when IKr dynami categorizing TdP risk of drugs and IC50 data alone are not
data are considered, chlorpromazine is highly trapped in theu cient.

closed hERG channel and very slow in unbinding during diastol

The second model variation we tested has the IKr dynamic

intervals (i et al., 201). This makes it more dangerous than its model included, but without optimized channel conductances
IKr 1IC50 suggests and thus classi ed as an intermediateerath to reproduce AP changes under channel blocking conditions

TABLE 3 | Leave-one-out prediction error for a range of metrics at a Clof 2,000
ms and 3 doses (1, 10, and 20x Cmax): resting membrane poteral (resting Vm),

maximum upstroke velocity (dV/dtmax), peak membrane poteidl (peak Vm),
APD at 50 and 90% of the amplitude (APD50 and APD90), action gential (AP)
triangulation (APDtri), diastolic intracellular calciugoncentration ([Ce?c]i)

(diastolic Ca), peak [C&CJ; (peak Ca), calcium transient duration at 50 and 90% of
the amplitude (CaD50 and CaD90), calcium transient triandation (Catri), change

in amount of charge carried by INaL and ICaL (cqlnward).i(et al., 2017) and
charge carried by the net current (gNet).

Metric Leave-one out prediction error
1x Cmax 10x Cmax 20x Cmax

gNet 0.17 0.08 0.08
cqlnward 0.25 0.33 0.33
Catri 1.25 1.08 1.08
CaD90 1.42 1.42 0.83
CaD50 1.42 1.0 0.83
peak Ca 0.92 0.75 0.83
diastolic Ca 0.92 0.83 0.83
APDtri 0.5 0.67 0.58
APD90 0.17 0.5 0.5
APD50 0.33 0.33 0.5
peak Vm 0.42 0.42 0.42
dV/dtmax 0.42 0.83 1.17
resting Vm 1.00 0.75 0.75

(Figure 50. Note that this model variant is the same as
the original IKr-dyn ORd model I(i et al., 201y and, as
demonstrated irFigure 1, has an inaccurate quanti cation of the
block e ects of individual currents compared to experimental
data. In this scenario the low risk drug ranolazine is missilasl

as a high risk compoundHigure 5C). Ranolazine is a potent IKr
and INaL current blocker and these two e ects can balance each
other to reduce ranolazine's TdP riskiftzelevitch et al., 2004;
Johannesen et al., 2016; Saad et al.,)2B&gause the INaL e ect

is underestimated and the IKr e ect is overestimated without
channel conductance optimizatiorFigure 1), ranolazine has

a dominant IKr block e ects when simulated by this model
variant and thus will be mistakenly put in the high risk category
(Figure 5C). Taken together, this suggests that the two added
features are both important for TdP risk strati cation and sa
mechanistically explain why a certain drug belongs to a speci
TdP risk level.

Physiological Signi cance of gNet

In order to assess the physiological signi cance of the metri
we borrowed some concepts from non-linear dynamic theory,
where EADs appear as membrane voltage oscillations when
the equilibrium state at the plateau phase (membrane voltage
between 0 and 40 mV) changes its stability via bifurcatio@(

et al., 2013; Kurata et al., 201The robustness of the system
could be evaluated by applying a speci c perturbation with a
series of strengths and measuring the range of the pertwbati

FIGURE 5 | gNet for the 12 CiPA training compounds for a range of doses (8—-25x Cmax) at a pacing rate of 2,000 ms(A) Optimized IKr-dyn ORd;(B) A model
variation without the incorporation of the IKr dynamic modelnote this is the same model as irDutta et al., 2016) and; (C) A model variation without the optimized
channel conductances to accurately quantify block effect®f individual currents (note this is the same model as ini et al., 2017). Different TdP risk levels are color
coded (high risk in red, intermediate risk in blue and low/nask in green). Results are not shown once drug concentrati®are high enough to induce early after
depolarizations (EADSs) (i.e., quinidine).
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the system can tolerate without changing stability (i..¢gyence TABLE 4 | Correlation (using pearson method) between qNet, APD90 and
or annihilation of oscillations) Kurata et al., 20()8 We applied cqlnward and IKr reduction threshold for the 11 drugs (diltisam is not included
this concept to our model usina IKr maximum Conductancebecause EADs could not be induced for the highest IKr reductio tested 99.99%)
. P . 9 X . for a CL of 2,000 ms across all doses from 0.5 to 25x Cmax. Simuaitions where

reduct!on as a pertu_rbatlon. In this case the _mlnlmum IKr the IKr reduction threshold is 0 (EADs occur without added IKeduction, as for
reduction required to induce an EAD (IKr reduction threslddl  quinidine 2.3x Cmax) and results where the IKr reduction threshold codinot be
re ects the system's robustness against, or distance fEhDs. calculated (the maximum IKr reduction tested, 99.99%, did nbtrigger an EAD, as

Therefore. for each drug over a range of concentrations fronff" diltiazem at all Cmax, verapamil 1.7x Cmax, and mexiletine  3.8x Cmax)

' . luded.

0.5 to 25x Cmax we calculated the IKr reduction thresholds, a "¢ %
checked their correlation with the metrics gNet, APD90, andbrug Correlation with IKr reduction threshold
cqlnward respectively. Detailed correlation plots for eactnic

can be found in the Supplemental Figures ZFable 4shows the anet APD90 cainward
correlation coe cients for each drug across all conceniwat  quinigine 0.996 0.994 0.197
for IKr reduction threshold vs. gNet, APD90 and cqlnward gepyigil 0.948 0.992 0.432
respectively. We see that qNet shows a strong correlatiamsacr g0 0.979 0.992 0.971
all drugs (close to 1). As gNet increases the IKr reductionyseiide 0.96 0.993 1
threshold (and the system's robustness against EAD) ise®a ciqaqrige 0.988 0.996 0.994
and vice versa as gNet decreases. The bigger the gNet value {1 .. <ctron 0.997 0.999 0.595
safer the system is and the harder it is to induce EAD. Terfenadine 0.968 0.944 0.804
For APD90, in most cases there is a strong negative cormelati Chlorpromazine 0.995 1 0.895
with IKr reduction threshold (close to 1) as expected, indicating . 0.87 0.992 0.961
the longer the APD the lower the repolarization robustnes§/erapamil 0.977 0.998 0.991
(i.e., the closer to EAD) and vice verseable 4. However, this L
trend reverses completely for some drugs like verapamil and""e" 0974 0989 0983

mexiletine, where the correlation is positiviaple 4, suggesting

the longer the APD9O0 the higher the repolarization robustnesgTable 4, despite a good performance (next to only gNet)
(the further away from EAD). This is contradictory to the on separating the risk categories for the training compounds
general perception that longer APD90 (and QTc) signals a lighgFigure 4). This suggests cqlnward does not indicate the
EAD/TdP liability. These unexpected relationships betweBDA repolarization robustness to a perturbation of hERG channel
and EAD can be seen more clearly Figure 6, where the AP density decrease. Whether cqinward is correlated with the
traces before and after the perturbation are shown. As can hebustness to another perturbation, or its separating power on
seen fromFigure 6A (left panel), using APD90 as a metric a cellthe 12 training drugs is a non-physiological artifact, rensaimbe
under mexiletine at 1x Cmax seems safer (APD less prolongethvestigated. If the latter this highlights the importanceassess
than at 10x Cmax, while gNet suggests otherwise (1x Cmax metric in not only a pre-de ned drug classi cation system,
is more dangerous due to a smaller gNet value). When theut also a physiological framework to quantitatively evdithe
same perturbation was applied (95% IKr reduction), the celtorrelation between the metric and EAD.

with 1x Cmax of mexiletine but not 10x, generated an EAD

(Figure 6Aright panel), indicating the cell with lower mexiletine D|SCUSSION

concentration is actually closer to EAD generation, cdesis

with the prediction of gNet but not APD90. The same patternin this study we present an optimized version of the ORd
can be seen ifrigure 6B where verapamil at 1x Cmax is shown model (O'Hara et al., 201)] which incorporates a dynamic
to be closer to EAD than at 3x Cmax through perturbation assaygepresentation of IKr to allow modeling of drug-IKr channel
(right panel), contradictory to the prediction using APD90tbu interactions (i et al., 201y as well as providing a better t to
not gNet (left panel). This pattern holds true when comparingexperimental data in both control and drug blocking condit&
ranolazine and cisapride as comparedrigure 3 As described by rescaling ionic current conductances. Most notably, INaL
earlier, a cell under ranolazine has a longer APD90 (indficat current is increased compared to the original model. We also
higher risk) and also a higher gNet value (indicating lowiekf  demonstrate that our optimized model, used in combinatiortwit
than cisapride at 25x Cmaxigure 6C left panel). An added g mechanistic net charge metric (qNet), enables good separat
perturbation of 75% IKr reduction will trigger an EAD with of 12 CiPA training compounds into their respective risk
cisapride but not ranolazine~gure 6Cright panel), supporting categories over a range of drug concentrations and pacimgrat
the prediction of gNet but not APD90. Note that here we usedrurthermore, we show that this is because gNet is correlatt
25x Cmax to match the concentrations usedrigure 3 When 1x g system's repolarization robustness to external perturbation

Cmax was used, the same pattern was seen for the two drugs ($#8RG channel density decrease, or IKr maximum conductance
Supplemental Figure 5). This suggests under most circumetancreduction.

gNetis a better metric than APD90 in marking the repolarizatio
robustness to added perturbation of IKr reduction. Optimization of the O'Hara Rudy Model

Finally, cqlnward does not correlate well with robustnesslo optimize the model we rescaled ionic current conductances
against EAD generation, measured as IKr reduction thregholin the model presented byi et al. (2017) We demonstrate in
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Figure 2 that recalibration of the model conductances leads tdFigure 5. This highlights the need for more precise model
very little changes in the AP in control conditions acrosaage representation to simulate drug e ects and stratify TdP risk
of pacing frequencies. It did however shift the e ect of somdevels. Additional human cardiomyocyte data may help taHar
of the di erent currents in the cardiac cell model, most notabl re ne this model.
increasing the role of INaL in contributing to AP. A recentidy
also optimized the ORd model to tvarious LQTS pro lesiann  gNet Correlates with the System's
et al., 2015 Mann et al. present an optimized version of theRpobustness against EADS
ORd model by scaling the conductances of IKs (by 5.75), IKr (bgased on ideas from non-linear dynamic theory and studies
1.00), ICaL (by 2.01), INaL (by 1.00), INaCa (by 2.95), ar@KN  yemonstrating mechanisms of EAD generatiGu et al., 2007;
(by 9.12). The scaling factors are di erent to the ones observ \yeiss et al., 2010 Xie et al., 2010: Chang et al., 2013;atrat,
in our model: IKs is increased in both models although ours)17 e established a theoretical framework to quantitagivel
is increased by a smaller amount 1.87, in their model IKr iyalyate the physiological consequences of the change of the
unchanged while it is slightly increased in our model, ICaL isqut (and in principle any) metric. A key concept here is the
increased signi cantly in their model but only very sligtin system robustnes«(irata et al., 2008 which is de ned as the
ours and INaL is unchanged in their model while it is scaled bygyg| of a speci ¢ perturbation the system can tolerate withau
2.661 in_our mode_l. The di erences in INaL can be EXplainedquaIitative change of stability (e.g., emergence or aratibih of
by the di erences in context of use of the model: Mann et a'-oscillations). We applied that concept here using IKr maximum
investigate the e ects of increased INaL (LQTS3) as opposed {nductance reduction as a perturbation. Note that in our
drug block of INaL, as in this study. Furthermore, akey dirc@  g9del all drugs' hERG/IKr block is modeled as binding to
between our model optimization process and Mann et al. is thagjj erent channel states without changing the IKr conductanc
we used human cardiomyocyte experimental data with varioughys the IKr conductance decrease applied here re ects extra
channel blockers, while they used clinical LQTS data. Hewev pr5-EAD perturbations independent of each drug's direct ion
one of their ndings was that the ORd model over predicts thechannel block activities, for example inter-subject varigbil
e ect of IKr block (50% IKr block produced a 42% increase i”(hERG channel density variation due to genetic background),
APD90 as opposed to the 16.5% observed clinically), which jstra-subject variability (regional di erence in hERG chagin
concurrent with our ndings. An awareness of this property of density), chronic drug e ects (to block hERG maturation), or
the ORd model is important as the model is often consideredjyg-drug interaction. We found that gNet is correlated it
a consensus gold standard model for simulating drug e ectgne cell's repolarizing robustness to the perturbation of IKr
on cardiac cells, and properties such as the over prediction @fnguctance reduction. When gNet increases, the cell's IKr
block of IKr may lead to inaccurate predictions of drug e ectsyeqyction threshold also increases, meaning the cell is ngpvi
on cardiac electrophysiology. Our manuscript further highlis away from EAD and needs a more severe perturbation of IKr
this point and provides an alternative model with improved condyctance reduction to trigger an EAD. The opposite happens
balance of the e ect of the di erent ionic currents in drug bloc  when gNet decreases. This positive correlation is consistent
conditions. across all the compounds tested in this study. In contrasD2®
Performance of the gNet Metric Using the does not show a consistent correlation With the repolaromati
.. robustness across all the drugs, suggesting for some drugs
Optimized Model (mainly compounds with balanced inward and outward current
Using pharmacology data for the 12 CiPA training compoundsy|ocking activities) APD90 may not be a good indicator of
(Lietal., 201), we assessed the suitability of a range of standargistance from EAD.
metrics based on AP morphology properties, as well as the The concept of robustness to pro-EAD perturbations is highly
recently published cqlnward metrid( et al., 201y and our  yg|ated to that of repolarization reserve, developedRayden
new gNet metric. We demonstrated that the commonly used99g)to describe the redundant cellular mechanisms to e ect
AP-based metrics are poor indicators of TdP risk and foundgrderly and rapid repolarization, which can be disrupted by an
that our gNet metric allowed best separation of the CiPAgdded stressor (perturbation), resulting in APD prolongatio
training compounds into their risk categories. Our new metri and/or EAD. We chose to use the term robustness instead
outperformed the cqlnward metric presented in Li et al. whichof repolarization reserve because the latter has been widely
may be a consequence of optimized channel conductances ii@ed to describe a cell's repolarization mechanism against
better quantify the block e ects of individual currents. both delayed repolarization (APD prolongation) and voltage
Our optimized IKr-dyn ORd model has two important oscillation (EAD), which we show iRigure 6are not necessarily
features compared to the original ORd model: incorporationcorrelated with each other. In contrast, robustness of aesyst
of modeling drug-IKr interaction kinetics based on dynamica concept borrowed from non-linear dynamic theori{(rata
hERG binding datal(i et al., 201y and better characterization et al., 200§ is directly related to emergence or annihilation
of individual currents' role in AP based on channel blockingof oscillations (EADs) in the presence of perturbations. There
data. We demonstrate the importance of simulating drug-IKrare di erent types of perturbations that could be used to test
dynamics and accurate drug block conditions by providinga system's robustness, for instance an applied bias current
rationale for misclassi cation of compounds when either one(Gray and Huelsing, 2008; Kurata et al., 2@ an increased
of the features were removed during TdP risk classi cationconductance for ICaL and/or INaL. We chose IKr conductance

Frontiers in Physiology | www.frontiersin.org 11 August 2017 | Volume 8 | Article 616



Dutta et al. In silico Proarrhythmia Risk Assessment

FIGURE 6 | AP traces for mexileting(A) at 1x Cmax (black solid line) and 10x Cmax (gray dashed line)twout (left panel) and with 95% IKr reduction (right panel);
verapamil(B) at 1x Cmax (black solid line) and 3x Cmax (gray dashed line)twout (left panel) and with 98% IKr reduction (right panel)na ranolazine (black solid line)
and cisapride (dashed gray linefC) at 25x Cmax without (left panel) and with 75% IKr reduction @it panel) for a CL of 2,000 ms. Corresponding APD90 (ms) and
gNet (mC/mF) values are reported in black for mexiletine 1x Cmax, veramil 1x Cmax and ranolazine 25x Cmax and in gray for mexilegrnlOx Cmax, verapamil 3x
Cmax and cisapride 25x Cmax. Note the IKr reduction (simulateby scaling the IKr maximum conductance) is applied in adddn to the drug block effect and is used
to assess the system's robustness against EADs (see Resultection).

reduction as a perturbation because it is independent of theategory separation does not correlate with the robustneli&rto
direct drug e ects (the dynamic IKr model allows us to model conductance reduction, but could potentially correlate witie t
IKr blockers without changing IKr conductance), and also itrobustness to other perturbations. We also note that even gqNet
naturally re ects many physiological and pharmacologicetdes  is not perfectly correlated with the robustness to IKr redanti
(hERG channel density variability, hERG channel tra cking The correlation between gNet and IKr reduction thresholdswa
block, etc.). It is possible that using di erent perturbatiotite  checked only for 12 drugs at selected concentrations (8:6-2
same system can show di erent robustness against EADs. F@max), and it is not known if the strong correlation holds &u
example, the second best metric cqlnward in terms of rislbbeyond the drugs and concentrations tested. Even within the
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concentrations tested, some drugs (for instance ranolaaioe on our current knowledge, they provide enough information
not have a consistent correlation across all the conceintrtat to correctly separate drugs into their TdP risk categories.
(Supplemental Figure 2). This suggests it may be bene cial tAdditionally, calcium transient properties in the ORd model
use the repolarization robustness (for instance IKr redutti dier from other models, such as the Grandi et al. model
threshold) directly as a metric so that it has clear and direc(Grandi et al., 201)) therefore, changes to the calcium transient
physiological meaning. However, this method is much morecould improve prediction of TdP risk. In fact, Cummins et al.
computationally intensive: for each drug at each conceitrat incorporated the Grandi et al. model [along with the ORd and
the computing time for the IKr reduction threshold is more tha the ten Tusscher et al. modek( Tusscher and Pan lov, 20)J6
10 times that for gNet, as multiple levels of perturbations aren their TdP risk classi cation and found diastolic intralb@ar
needed to nd the threshold. In addition, it is hard to de ne calcium and APD to be good markers of TdP riskymmins
the metric if di erent perturbations to the same system lead toet al., 201} However, as mentioned earlier in this study
di erent thresholds (robustness). Thus, using a highly eteted Cummins et al. de ne a binary TdP risk strati cation that dse

surrogate metric gNet is a practical choice currently. not follow the same categorization as de ned by CiPA.
e . A number of dierent avenues for further improvement
Limitations and Ongoing Work of the model and TdP risk prediction approach presented

While the model and metric combination presented here haV%ere are Currenﬂy being explored. We are examining the

been able to separate all the CiPA training compounds intartheiyse of thresholds for TdP risk level classi cation, as well as
respective TdP risk categories, we have yet to test this agproagcorporating both variability and uncertainty within the odel

on the CiPA validation compounds or any compounds that wergyredictions. In conclusion, in this manuscript we present an
not used in the training of the model, which would provide an optimized version of the IKr-dyn ORd model presented in

independentvalidation Ofthisframework.Akeylimitatiohtbis Li et al. (2017)that is able to accurate|y separate the CiPA
approach that prevents an independent validation study is thafaining compounds into their respective risk categories and
we have not provided thresholds for the qNet metric, whichldou correlates well with the system's robustness against EABs. A
be used to place an unknown compound within a speci ¢ TdPindependent validation of this approach is limited, but more

risk category. Instead we would only be able to group togethesngoing work will see further re nement of this model and

compounds which would be expected to pose similar TdP risk. jncreasing its suitability to be used routinely within theR®i
As suggested in previous studies the sodium potassium pumgaradigm.

(Lancaster and Sobie, 2016; Britton et al., 2@nd the sodium

calcium exchangerArmoundas et al., 2003; Nagy et al., 2pO4AUTHOR CONTRIBUTIONS

play an important role in EAD generation. Simulations of

hypothetical drugs byancaster and Sobie (201sjow that both 35 pT, MW, and WW contributed to the acquisition of data and
the sodium potassium pump and sodium calcium exchangeprovided experimental data guidance. SD and ZL contributed
were ranked as having the greatest in uence on TdP risk, @bo\g gesigning the work and carried out simulations. TC and DS
IKs, IK1, and Ito (but excluding IKr, ICaL, and INa). Further -ontributed to revising the manuscript. SD, ZL, KC, and KB

experiments and simulations are needed to assess how CiRfntriputed to the analysis and interpretation of the data and
drugs a ect these currents and whether they should be diyectlyyiting of the manuscript.

taken into account in our net current calculation to improvel
risk prediction. FUNDING

Another key factor to consider is that while we have
demonstrated the success of our approach using gold standafghis project was funded by the FDA Critical Path Initiative.
manual patch clamp data. At least in a pre-regulatory settimg,
CiPA framework will likely rely on the use of high-throughput ACKNOWLEDGMENTS
ion channel screening data acquired from di erent platforms
routinely used within the pharmaceutical industry. We wouldWe would like to thank Drs. Thomas O'Hara, Norman
therefore need to further re ne this model to t to high- Stockbridge, Richard Gray, Leonid Livshitz, Jules HancojgtNa
throughput system generated data and demonstrate that th@bi-Gerges, Jamie Vandenberg, Gary Mirams, Bernard Fermini
model and metric combination identi ed perform equally well Adam Hill, Meisam Hosseini and Jose Vicente for useful
in this case. Furthermore, dynamic modeling of other chasneldiscussions and input.
(such as ICalL) may be needed as the project moves forward;
however, at this stage detailed kinetic drug block data foSUPPLEMENTARY MATERIAL
other channels is not available, nor are the protocols toasttr
the necessary parameters. A priority of CiPA is to keep th&he Supplementary Material for this article can be found
framework simple and constrain the cost of data generationpnline at: http://journal.frontiersin.org/article/10389/fphys.
therefore, we use only IC50 data for other channels as, bas@017.00616/full#supplementary-material
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