Beyond QT—
The Comprehensive in Vitro Proarrhythmia Assay

27 February 2014

Norman Stockbridge
Division of Cardiovascular and Renal Products
Center for Drug Evaluation and Research
U.S. Food and Drug Administration
ICH E14/ S7B: Current FDA Policy

INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE

ICH Harmonised Tripartite Guideline

The Clinical Evaluation of QT/QTc Interval Prolongation and Proarrhythmic Potential for Non-Antiarhythmic Drugs

E14

Current Step 4 version dated 12 May 2005

INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE

ICH Harmonised Tripartite Guideline

The Non-Clinical Evaluation of the Potential for Delayed Ventricular Repolarization (QT Interval Prolongation) by Human Pharmaceuticals

S7B

Current Step 4 version dated 12 May 2005
Success of E14/S7B

• No QT-related withdrawals
• Reduction in post-marketing reports of TdP for non-anti-arrhythmic drugs
• Continued to approve some drugs with QT liability where benefits clearly outweigh apparent risks
False positives

- TQT assay limitations
- Small effects from blocking minor outward currents (not hERG)
- Real hERG blockers, but still not proarrhythmic
Cost

- $B in TQT studies (OK)
- Cautionary labeling when QT effect not from hERG (not good)
- Perversion of lead candidate selection (really bad)
 - Some true hERG blockers are not proarrhythmic
 - Selection against hERG forces other compromises
We can do better...

• TdP class of arrhythmias
 – Susceptibility in the form of derangement of the balance of inward and outward currents during repolarization
 • Very well understood
 • We know how to assay for this USING HUMAN CHANNELS, how to reconstruct the action potential, and how to probe for vulnerability during repolarization
 – Regional heterogeneity in electrical state across the ventricle
 • Role is well understood
 • Rare conditions (why you go hours to decades in susceptible state)
...and some firms already are

- AbbVie
- Astra-Zeneca
- GSK
- Lilly
- Others?
The assay

• Characterization of drug effects on human ion channels
• Reconstruction of the action potential from the summed effects of the drug
• Comparison of modeled effects with responses of cultured stem-cell-derived human cardiac myocytes
Cardiac action potential

- Human channels
- Cells overexpressing single channel types
- Amenable to high-throughput electrophysiology

Hoekstra et al., 2012
O’Hara-Rudy model

- Suffices to model single cell (not heart!)
- Exact proarrhythmia metric is under debate
- …but is likely to involve proximity to having EADs

T.J. O’Hara, L. Virág, A. Varró, Y. Rudy,
“Simulation of the undiseased human cardiac ventricular action potential: Model formulation and experimental validation”
doi:10.1371/journal.pcbi.1002061
Ion channel effects

A

- depolarizing current
- repolarizing current

0 1 2 3 4

100 ms

potential (mV)

I_{Na}

I_{Ca,L}

I_{Ca,T}

I_{to1}

I_{Cl(Ca)}

I_{Kur}

I_{Kr}

I_{Ks}

I_{K1}

I_f

I_{NCX}

B

potential (mV)

EAD

I_{Ca,L}

C

potential (mV)

DAD

I_{NCX}
MEA recordings from myocytes
Acknowledgments

- Darell Abernethy/FDA
- Arthur Brown/ChanTest
- Thomas Colatsky/FDA
- Christine Garnett/Pharsight
- Gary Gintant/AbbVie
- Craig January/U Wisconsin
- Lars Johannesen/FDA
- John Koerner/FDA
- James Kramer/ChanTest
- Naomi Kruhlak/FDA
- Derek Leishman/Lilly
- Marek Malek/U London
- Sebastian Polak/Simcyp
- Philip Sager/Consultant
- Mary Ross Southworth/FDA
- David Strauss/FDA
- Robert Temple/FDA
- Nick Thomas/GE
- Douglas Throckmorton/FDA
- Jiwen Zhang/GE
- HESI ProA
- SPS
- CSRC