The New Paradigm for Proarrhythmia Assessment Without the TQT Study

Philip Sager, MD, FACC, FAHA, FHRS
Pharmaceutical/Device Consultant
Consulting Professor of Medicine
Stanford University School of Medicine
Chair, Scientific Programs Committee,
Cardiac Safety Research Consortium
Psager@Stanford.edu
Collaborators

- Drs. Stockbridge, Gintant, Pettit
- FDA
- EMA
- PMDA
- Health Canada
- CSRC
- HESI
- SPS
- In Silico Modelers
- Pharmaceutical and Device Companies
- CRO’s
- Numerous Academic Groups
QT Prolonged/Drug-Induced Torsade

- QT prolongation/TdP – single most common cause of withdrawal or restriction on marketed drugs
- This has resulted in the need for regulatory guidance

- TdP rarely observed during clinical development

- Focus on surrogates- HERG and QTc testing
 - QTc- sensitive but not very specific
S7B: Nonclinical Testing Strategy

Chemical/Pharmacological Class

In vitro \(I_{Kr} \) assay*

In vivo QT assay

Other nonclinical and clinical information

Integrated Risk Assessment

Follow-up studies

Evidence of Risk

None Weak Strong

*The \(hERG \) (gene for \(K_v \) 11.1 alpha subunit of \(I_{Kr} \)) related current is used
Consequences: Compound with QT effect

ICH E14- increase in QTc~5m is “positive

Consequences of developing a compound with QT effect

- Significant development burden
- Increased perceived risk = increased burden to demonstrate benefit
- Increased costs
- Delays in filing and/or approval
- Label warnings and competitive implications
- Licensing/partnering issues
- Often leads to termination of development
Torsadogenic Drugs

- ICH E14/S&B have resulted in no drugs with unrecognized risk being approved

- **Success!**

- Negative impact on drug development
 - Premature discontinuation due to hERG or QT “signal”
 - (Inaccurate) perception of risk, development burden, costs, labeling
 - Some potentially good compounds never get evaluated in humans
 - Drug development in specific areas- CNS
 - Many drugs with QT labeling are unlikely proarrhythmic
Ventricular Repolarization

- P wave
- QRS complex
- T wave

- Na⁺ current
- Ca²⁺ current (L-type, T-type)
- Transient outward current (I_TO1, I_TO2)
- Delayed rectifiers (I_Ks, I_Kr)
- Inward rectifier (I_K1)
- Pacemaker current (I_f)
- Na⁺-Ca²⁺ exchange
- Na⁺, K⁺-ATPase
QT Prolongation: Dissociation from TdP

- Sodium Pentobarbital
 - Prolongs QT but no TdP
 - Inhibits I_{kr}, I_{ks}, and late I_{Na}

- Amiodarone
 - TdP very rare
 - Inhibits I_{kr}, I_{ks}, late I_{Na}, and I_{Ca}

- Verapamil
 - Inhibits I_{Kr} but also Ca influx

- Ranolazine
 - Prolongs QT but no TdP
 - Inhibits late I_{Na}, I_{kr}, and I_{NaCa}
QT Prolongation: Dissociation from TdP

- Sodium Pentobarbital
 - Prolongs QT but no TdP
 - Inhibits I_{kr}, I_{ks}, and late I_{Na}
 - No EAD’s, reduces dispersion

- Amiodarone
 - TdP very rare
 - Inhibits I_{kr}, I_{ks}, late I_{Na}, and I_{Ca}
 - No EAD’s, reduces dispersion

- Verapamil
 - Inhibits I_{Kr} but also Ca influx
 - No QT prolongation or TdP

- Ranolazine
 - Prolongs QT but no TdP
 - Inhibits late I_{Na}, I_{kr}, and I_{NaCa}
 - No EAD’s, reduces dispersion;
 - Suppresses E4031 induced TdP

Thus QTc Prolongation need not cause TdP
Issues

- QT prolongation ≠ Proarrhythmia
- HERG block ≠ Proarrhythmia
- Negative impact on drug development
- New paradigm- based on our deep mechanistic understanding of TdP
New Paradigm

Might a new cardiac safety paradigm focused on non-clinical measurement of proarrhythmia proclivity:

Focus on the real issue: Proarrhythmia

- Reduce the premature termination of drugs with favourable benefit:risk profiles
- Make drug development more efficient
 - Move the bulk of proarrhythmic assessment to the discovery phase
 - Use the assays to potentially guide candidate selection
 - Obviate the TQT study
- Enhance the accuracy with which existing and/or new drugs are labelled relative to actual proarrhythmic risks
Rechanneling the cardiac proarrhythmia safety paradigm: A meeting report from the Cardiac Safety Research Consortium

Philip T. Sager, MD, FACC, FAHA, a Gary Gintant, PhD, b J. Rick Turner, PhD, c Syril Pettit, MEM, d and Norman Stockbridge, MD, PhD e Palo Alto, CA; North Chicago, IL; Durham, NC; Washington, DC; and White Oak, MD

- Proarrhythmic risk can be determined by pre-clinical assessments

- Proclivity to develop EAD’s
 - Ionic Currents
 - in silico modeling
 - Cell-Based Approach

- Focus on high throughput approaches

- ECG Phase 1 Assessment
Background: Proarrhythmic Vulnerability and Early Afterdepolarizations (EAD’s)

We understand the mechanism!

Proarrhythmic vulnerability linked to impairment of repolarization and repolarization instability culminating in early afterdepolarizations (EAD’s)

- EAD’s are triggers for Torsades de Pointes arrhythmia
- Ease of EAD induction reflects proarrhythmic vulnerability
- Provide means of ranking proarrhythmic potential
Assays and Approaches Considered for Comprehensive Assay (In Order of Complexity, Integration)

<table>
<thead>
<tr>
<th>Approach</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QSAR</td>
<td>Models describing relationship between molecular structural features and properties or activities at given pharmacological/toxicological endpoint</td>
</tr>
<tr>
<td>Receptor Affinity Assays</td>
<td>Typically competitive binding studies to ion channels</td>
</tr>
<tr>
<td>Single Channel Recording</td>
<td>Highly detailed measure of current through a single ionic channel</td>
</tr>
<tr>
<td>Macroscopic Ionic Currents</td>
<td>Detailed analysis of drug effects on functional cardiac currents; widely accepted</td>
</tr>
<tr>
<td>Isolated Cardiac Myocytes</td>
<td>Cardiocytes of human origin more likely to reflect native physiology; availability of stem-cell cardiocytes vs. tissues</td>
</tr>
<tr>
<td>In vitro/in vivo proarrhythmia</td>
<td>Tissues/organs or whole animal models mimicking enhanced proarrhythmia risk</td>
</tr>
<tr>
<td>Computer Models of Cardiac Myocytes</td>
<td>Reconstruction of electrical activity of ventricular myocytes from channel effects (delayed repolarization and EAD's)</td>
</tr>
<tr>
<td>Whole Heart Computer Models</td>
<td>Reconstruction of ECG and drug effects (incorporates individual channels and action potential studies)</td>
</tr>
</tbody>
</table>
CiPA: Two Component Proposal

Ionic Currents / In Silico Based Approach

- Effects on Multiple Cardiac Currents (Voltage Clamp Studies)
- + Reconstruction of Cellular Electrophysiology (In Silico Studies)

Myocyte-Based Approach

- Effects on Human Ventricular Myocytes (In Vitro Studies)

- Complementary approaches
- Not designed to reproduce arrhythmia

Define a gradation of risk instead of a binary approach
Core *In Vitro* Strategy. **Voltage Clamp Studies**

Ionic Currents

- **Voltage clamp studies**
 - Effects on cardiac currents
 - **Human channels** in heterologous expression systems
 - Establish best practices, *standardization across assays, laboratories*
 - Inhibition of current, ? Use dependency

- **Higher throughput automated patch platforms**
 - Efficiently determine *basic characteristics* of drug effects on currents for *in silico* reconstruction
Likely Candidate Currents

- **iKr** (hERG) – delayed ventricular repolarization

- **INafast** (Nav1.5) – excitability, conduction

- **INalate** (Nav1.5) – repolarization, mitigate hERG block

- **ICaL** (Cav1.2) – A-V conduction, mitigate hERG block

- **IKs** (KvLQT1-minK) – delayed ventricular repolarization

[Diagram of ionic currents showing depolarizing and repolarizing currents]
Core *in silico* Strategy: Reconstruction of the Cardiac Action Potential

Silico Reconstruction of Action Potentials

- Global effects on repolarization based on multiple ion channel effects
- Approach based on link between delayed repolarization supporting early afterdepolarizations (EAD’s) and TdP

![Diagram](image)

O’Hara et al, PLOS, 2011
Core *In vitro* Strategy: Human Cardiomyocytes

Electrophysiologic studies:
- Human stem-cell derived ventricular cardiomyocytes; well characterized, physiologic recording conditions
 - Action potential studies, **focus on repolarization** (duration, early afterdepolarizations, cellular integration)
 - Reproducibility essential, robust validation
 - Confirm drug effects from voltage clamp/*in silico* reconstructions
Stem-Cell Derived Myocytes: Possible Experimental Approach

Field Potential Measures (Microelectrode Array Techniques)

E-4031: Concentration-dependent Block of iKr Delays Repolarization, Provokes EAD’s

Nifedipine: Concentration-dependent Block of IcaL Speeds Repolarization
Stem-Cell Derived Myocytes: Possible Experimental Approach

Perforated patch method

? Determine excitability during Phase 3

Human IPS-Derived Stem Cells

- New technology that is evolving
- Desire to have as homogenous a population of adult cardiomyocytes as possible
- Evolving maturation and changes in EP properties over time
- “Standardization” across laboratories and stem cell sourcing
- Determination of appropriate drug-induced metrics indicating proarrhythmia proclivity
Summary and Paths Forward: CiPA Proposal

Approach based on

a) mechanistic understanding, integrating effects on multiple ion currents with *in silico* reconstruction

b) confirmation in human ventricular myocyte-based assay

- Not typical preclinical assay based on binary discrimination in complex, integrated (poorly understood) biological system

- Need input from safety pharmacologists, electrophysiologists, computational modelers, cell biologists, regulators

First Steps: Seek Input, Establish Workstreams (ongoing)
Comprehensive *In Vitro* ProArrhythmia Assay (*CiPA*)

What It Will Do:
- Standardize *in vitro* assays (used to characterize drug effects) and *in silico* modeling of drug effects
- Define role of human cardiomyocytes to inform on proarrhythmic potential of drugs
- Provide proarrhythmic **ranking** based on calibration efforts with agreed-upon standards
 - Not a binary approach

What It Will Not Do:
- Maintain status-quo for an imperfect surrogate marker of proarrhythmia
CIPA PROCESS

- Work streams
 - In Silico, Ion Channel, Myocyte, Regulatory, Steering Team

- Topical area leads

- Coordination and cross-stream interaction
Work Streams

In Silico – model design, execution, feedback and vetting
Tom Colatsky (Thomas.Colatsky@fda.hhs.gov)

Ion Channel – channel selection, protocol development, novel data generation to test model; Syril Petit (Spettit@hesiglobal.org)

Stem Cell Myocyte – protocols, platforms and validation; (Gary.Gintant@abbvie.com)

Regulatory – model design and validation compound selection, arrhythmia metrics, ECG assessment (Psager@Stanford.edu)

Steering Team – Coordination and integration

Norman Stockbridge, FDA: Norman.Stockbridge@fda.hhs.gov
Jennifer Pierson (HESI): Jennifer.Pierson@hesiglobal.org
CIPA Steering Team

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Representing</th>
<th>Work Stream Represented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norman Stockbridge</td>
<td>FDA</td>
<td>US Regulators</td>
<td>All</td>
</tr>
<tr>
<td>Tom Colatsky</td>
<td>FDA</td>
<td>US Regulators</td>
<td>In Silico Work Stream</td>
</tr>
<tr>
<td>Gary Gintant</td>
<td>AbbVie</td>
<td>Pharm/Non-clinical community</td>
<td>All</td>
</tr>
<tr>
<td>Hugo Vargas</td>
<td>Amgen</td>
<td>Pharma/SPS</td>
<td>Ion Channel Work Stream</td>
</tr>
<tr>
<td>Derek Leishman</td>
<td>Lilly</td>
<td>Pharma/SPS</td>
<td>Ion Channel Work Stream</td>
</tr>
<tr>
<td>Jean-Pierre Valentin</td>
<td>AZ</td>
<td>Pharma/Non-clinical community</td>
<td>Ion Channel Work Stream, Regulatory Work Stream</td>
</tr>
<tr>
<td>Philip Sager</td>
<td>CSRC</td>
<td>Clinical Community</td>
<td>Regulatory Work Stream, Ion Channel Work Stream</td>
</tr>
<tr>
<td>Jiwen Zhang</td>
<td>GE Healthcare</td>
<td>Pharma/Stem Cell Community</td>
<td>Myocyte Work Stream</td>
</tr>
<tr>
<td>Krishna Prasad</td>
<td>EMA</td>
<td>Non-US Regulators</td>
<td>Regulatory Work Stream</td>
</tr>
<tr>
<td>Colette Strnadova</td>
<td>Health Canada</td>
<td>Non-US Regulators</td>
<td>Regulatory Work Stream</td>
</tr>
<tr>
<td>Natalia Trayanova</td>
<td>Johns Hopkins</td>
<td>Modeling Community</td>
<td>In Silico Work Stream</td>
</tr>
<tr>
<td>Syril Pettit</td>
<td>HESI</td>
<td>HESI Cardiac Safety Committee</td>
<td>All</td>
</tr>
<tr>
<td>Jennifer Pierson</td>
<td>HESI</td>
<td>HESI Cardiac Safety Committee</td>
<td>All</td>
</tr>
<tr>
<td>To Be Determined</td>
<td>PMDA</td>
<td>Japanese Regulators</td>
<td>Regulatory Work Stream</td>
</tr>
</tbody>
</table>
CIPA Steering Team

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Representing</th>
<th>Work Stream Represented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norman Stockbridge</td>
<td>FDA</td>
<td>US Regulators</td>
<td>All</td>
</tr>
<tr>
<td>Tom Colatsky</td>
<td>FDA</td>
<td>US Regulators</td>
<td>In Silico Work Stream</td>
</tr>
<tr>
<td>Gary Gintant</td>
<td>AbbVie</td>
<td>Pharm/Non-clinical community</td>
<td>All</td>
</tr>
<tr>
<td>Hugo Vargas</td>
<td>Amgen</td>
<td>Pharma/SPS</td>
<td>Ion Channel Work Stream</td>
</tr>
<tr>
<td>Derek Leishman</td>
<td>Lilly</td>
<td>Pharma/SPS</td>
<td>Ion Channel Work Stream</td>
</tr>
<tr>
<td>Jean-Pierre Valentin</td>
<td>AZ</td>
<td>Pharma/Non-clinical community</td>
<td>Ion Channel Work Stream, Regulatory Work Stream</td>
</tr>
<tr>
<td>Philip Sager</td>
<td>CSRC</td>
<td>Clinical Community</td>
<td>Regulatory Work Stream, Ion Channel Work Stream</td>
</tr>
<tr>
<td>Jiwen Zhang</td>
<td>GE Healthcare</td>
<td>Pharma/Stem Cell Community</td>
<td>Myocyte Work Stream</td>
</tr>
<tr>
<td>Krishna Prasad</td>
<td>EMA</td>
<td>Non-US Regulators</td>
<td>Regulatory Work Stream</td>
</tr>
<tr>
<td>Colette Strnadova</td>
<td>Health Canada</td>
<td>Non-US Regulators</td>
<td>Regulatory Work Stream</td>
</tr>
<tr>
<td>Natalia Trayanova</td>
<td>Johns Hopkins</td>
<td>Modeling Community</td>
<td>In Silico Work Stream</td>
</tr>
<tr>
<td>Syril Pettit</td>
<td>HESI</td>
<td>HESI Cardiac Safety Committee</td>
<td>All</td>
</tr>
<tr>
<td>Jennifer Pierson</td>
<td>HESI</td>
<td>HESI Cardiac Safety Committee</td>
<td>All</td>
</tr>
<tr>
<td>To Be Determined</td>
<td>PMDA</td>
<td>Japanese Regulators</td>
<td>Regulatory Work Stream</td>
</tr>
</tbody>
</table>
Summary

• Exciting potential evolution in CV Arrhythmia assessment

• Potential to change current approaches with positive impact on drug development

• Can concepts be extended to other areas?

• Many opportunities for those interested in contributing to become involved
Thank you

Philip Sager, MD, FACC, FAHA
Psager@Stanford.edu
Ph 1-650.450.7477