Comprehensive in vitro Proarrhythmia Assay

Norman Stockbridge
Division of Cardiovascular and Renal Products
FDA/CDER
Torsade de Pointes
(Twisting of the points)
Drugs Removed From Market for Arrhythmia Risk

- Encainide (Enkaid®) 1991 (1986)
- Terfenadine (Seldane®) 1998 (1985)
- Astemizole (Hismanal®) 1999 (1988)
- Grepafloxacin (Raxar®) 1999 (1997)
- Cisapride (Propulsid®) 2000 (1993)
- Levomethadyl (Orlaam®) 2003 (1993)

* year of removal (year of approval)
Responses to TdP crisis

• Regulatory
 • ICH S7B, E14 guidances
 • FDA QT interdisciplinary review team

• Technical
 • HL7 ECG data standard
 • ECG Warehouse

• Community & Research
 • Specialized QT study vendors
 • ECG Metrics Consortium
 • Cardiac Safety Research Consortium
Direct costs

• Since 2005
 • Around 300 TQT studies reported to FDA
 • Estimated 450 TQT studies performed
 • Estimated cost per study is few $M

• Total of ~$1B over 9 years
Success?

- No new withdrawals
- Decline in TdP as a reported adverse event

![Graph showing cases of Torsade de Pointes over years. The graph is divided into two sections: one for all drugs and one excluding anti-arrhythmics.](image-url)
What’s wrong with that?

• False negatives, but other arrhythmias are detected in other assays (never were the problem).

• Not all QT prolongation represents effects on hERG (false positives, parts 1 and 2).
 • QRS prolongation from blocking Na, Ca (inward) currents
 • True repolarization effects can represent minor potassium currents (we see negative hERG and then a plateau effect on QT of 10 ms or so)
What’s wrong with that?

• Not all proarrhythmic risk attributes to hERG blockade (false negatives).
• Not all QT prolongation represents effects on hERG (false positives).
• Some true hERG blockers are anti-arrhythmic, because of effects on inward currents, too (worse false positives).
 • Verapamil
 • Ranolazine
 • Amiodarone
• Not all proarrhythmic risk attributes to hERG blockade (false negatives).
• Not all QT prolongation represents effects on hERG (false positives).
• Some true hERG blockers are anti-arrhythmic, because of effects on inward currents, too (worse false positives).

• **Optimizing against hERG can be a bad bargain**
 • Reduced affinity for target receptor
 • New off-target effects
 • No drug candidate
What’s wrong with that?

ICH S7B and E14 were well-intentioned responses to a public health issue, but they had costs that were wildly out of proportion to the problem we were trying to solve, most importantly in the form of fewer safe and effective drugs entering development.
Solutions

• TQT cheaper
 • IQPharma project to get TQT-quality data from early phase clinical studies, utilizing best methods learned from TQT—data collection, data processing, exposure-response modeling, etc.

• Drug effects on multiple ion channels
 • Various efforts to wring more information from the human ECG about which ion channels are likely to be involved
 • Comprehensive in vitro proarrhythmia assay
Basis for CiPA

• We deeply understand what makes one drug proarrhythmic and another not, as well understood as any toxicity
 • Proarrhythmia requires reduction in repolarizing relative to depolarizing forces, and ...
 • Regional heterogeneity in the heart to set up a circuit. This is why you can go decades with impaired repolarization.

• The ion channel effects, but not heterogeneity, are amenable to study
 • We can isolate the relevant machinery of the human heart
 • There are commercially available high-throughput techniques, so an improved assay can be implemented early, at compound screening
Cardiac ionic currents

ECG

Action potential

Inward currents

Outward currents

P wave
Q wave
QRS complex
T wave
QT interval: normal
prolonged
phase 0
phase 1
phase 2
phase 3
phase 4

Baseline
50% 4

I_{Na}

I_{Ca,L}

I_{Ca,T}

I_{K1}

I_{K2}

I_{K3}

I_{K4}

I_{K1} delayed rectifiers

I_{K2} delayed rectifiers

I_{K3} delayed rectifiers

Roden et al. 2002
Vulnerability during repolarization

EAD
Bradycardia-dependent

Phase 2 EAD-
Phase 3 EAD-induced triggered APs

normal prolonged
conditional phases
Comprehensive in vitro Proarrhythmia Assay (CiPA)

• Assess drug effects on each cardiac ion channel type individually, using a high-throughput assay
• Compute net effect on refractoriness of the action potential to EADs
• Check to see if you missed something important
 • Action potentials in stem cell derived human cardiac myocytes
 • Signature of drug effects on the morphology of the ECG
CiPA Organization

- Ion Channel Work Stream led by SPS/Fermini & Abi Gerges
- In Silico Work Stream led by FDA/Collatsky
- Myocyte Work Stream led by HESI/Gintant & Zhang
- Compound Selection Work Stream led by CSRC/Sager
- Steering Committee / above plus various academics and regulators at EMA, Japan, and FDA.
Progress note

• Large international enterprise (pharma, technology vendors, academics, regulators) underway to define protocols
• Pilot studies getting underway
• Validation plan coordinated with various regulatory agencies and ICH
• Probably 18 months from fruition
Summary

• CiPA is possible because the proarrhythmia science is well understood and the technological requirements can be met on a commercial scale.

• CiPA may be unique in toxicology.
 • Failure modes can be enumerated and tested.
 • CiPA uses human machinery and cells
 • Reconstruction of net effects on proarrhythmic potential is complex, but the model is fully specified and has no unmeasurable parameters

• CiPA is highly likely
 • To preserve the sensitivity of the current paradigm
 • To improve specificity over the TQT
 • To rehabilitate the labels of numerous marketed drugs
 • To widen the choice of molecules fit for clinical development.