Proarrhythmic Assessment of Drugs: The Need For a New Paradigm

Philip Sager, MD, FACC, FAHA, FHRS Consulting Professor of Medicine Stanford University School of Medicine Chair, Scientific Programs Committee, Cardiac Safety Research Consortium Psager@Stanford.edu

Industry Relationships

Member of DSMB, Adjudication Committee, or Consultant

- Genentech
- Orexo
- Aerpio
- Akebia
- Balance
- Medtronic
- Biomedical Systems
- ICardiac
- Heart Metabolics

- Milestone
- Theravance
- Lilly
- Viamet
- Shire
- Helsinn
- Celgene
- SNBL
- Pharmacyclics
- Anthera

Drug-Induced TdP

- Quinidine syncope with drug-induced LQTS (Selter and Wray, 1964)
- Ventricular arrhythmia Torsades de Pointes TdP (Dessertenne, 1966)
- Terfenadine

Mean QT change over 12 hours:6msMean change at Tmax:12msMean change with metabolic inhibition:>82ms

Problem not clearly identified after 100,000,000 prescriptions

Quinidine, d,I-sotalol, dofetilide, ibutilide 1-4% TdP incidence

3

QT Prolonged/Drug-Induced Torsade

- QT prolongation/TdP single most common cause of withdrawal or restriction on marketed drugs
 - Terfenadine, astemizole, cisapride, droperidol, grepafloxacin, levomethadyl, lidoflazine, sertindole, terodiline
- This has resulted in the need for regulatory guidance.
- TdP rarely observed during clinical development
- Focus on surrogates- HERG and QTc testing
 QTc- sensitive but not very specific

*The hERG (gene for K_v 11.1 alpha subunit of I_{Kr}) related current is used

Clinical QT Update

Guidance document – ICH E14

Applicable to all new drugs with systemic bioavailability

Cianal

Implications of a QT

- Alfuzosin
 - This observation [mild QT prolongation] should be considered in clinical decisions to prescribe UROXATRAL for patients with a known history of QT prolongation or patients who are taking medications known to prolong QT
- Ziprasidone
 - [has a] greater capacity to prolong the QT/QTc interval compared to several other antipsychotic drugs. ...raises the possibility that the risk of sudden death may be greater for ziprasidone than for other available drugs ...
 - In many cases this would lead to the conclusion that other drugs should be tried first

Consequences: Compound with QT effect

Consequences of developing a compound with QT effect

- Significant development burden
- Increased perceived risk = increased burden to demonstrate benefit
- Increased costs
- Delays in filing and/or approval
- Label warnings and competitive implications
- Licensing/partnering issues
- Often leads to termination of development

Torsadogenic Drugs

 ICH E14/S7B have resulted in no drugs with unrecognized risk being approved

Success!

- Negative impact on drug development
 - Premature discontinuation due to hERG or QT "signal"
 - (Inaccurate) perception of risk leading to drug discontinuation
 Estimates of up to 60%
 - Concerns regarding development burden, costs, labeling
 - Many potentially good compounds never get evaluated in humans due to a hERG effect
 - Drug development in specific areas- CNS
 - Many drugs with QT labeling are unlikely proarrhythmic
 - Engineering-out hERG- applicability/other effects

Ventricular Repolarization

Evidence of Alternative Mechanisms

Strong genetic data illustrating potential impact of non-hERG-mediated changes in QT interval with drug examples for most

Current	I _{Kr}	I _{Ks}	I _{K1}	I _{Na}	I _{Ca,L}
Loss of function	QT↑	QT↑	QT↑		QT↓
Gain of function	QT↓	QT↓	QT↓	QT↑	QT↑

Acquired LQTS: APD/EAD/QT Interval Prolonging Models

Drug/Gene Defect/Intervention	Principal Target	
Veratridine, ATX II, anthopleurin A,	Enhance late I _{Na}	
alfuzosin, (<i>mutations in Na</i> + channels)		
Bay K 8644 (<i>mutations in Ca</i> ²⁺ channels)	Enhance I _{Ca-L}	
Cs ⁺ , quinidine, procainamide, bepridil	Suppress K ⁺ currents	
E-4031, dofetilide, ibutilide, sotalol, terfenadine,	Suppress I _{Kr}	
astemizole, desmethylastemizole, cisapride,		
haloperidol, droperidol, halofantin, erythromycin	9	
fluoxetine, etc. (<i>mutations in Kv11.1 K</i> + channels)		
Azimilide, Chromanol 293B	Suppress I _{ks}	
(mutations in Kv7.1 K+ channels)		

Conclusions:

 Most LQTS drugs cause rapid <u>direct channel</u> block of I_{kr}, but this is not the exclusive mechanism

Development of TdP

Antzelevitch C et al. *J Cardiovasc Pharmacol Therapeut.* 2004;9(suppl 1):S65-83.

QT Prolongation: Dissociation from TdP

- Sodium Pentobarbital
 - Prolongs QT but no TdP
 - Inhibits I_{kr} , I_{ks} , and late I_{Na}
- Amiodarone
 - TdP very rare
 - Inhibits I_{kr} , I_{ks} , late I_{Na} , and I_{ca}
- Verapamil
 - Inhibits I_{Kr} but also Ca influx
- Ranolazine
 - Prolongs QT but no TdP
 - Inhibits late I_{Na} , I_{kr} , and I_{NaCa}

QT Prolongation: Dissociation from TdP

- Sodium Pentobarbital
 - Prolongs QT but no TdP
 - Inhibits I_{kr} , I_{ks} , and late I_{Na}
 - No EAD's, reduces dispersion
- Amiodarone
 - TdP very rare
 - Inhibits I_{kr} , I_{ks} , late I_{Na} , and I_{Ca}
 - No EAD's, reduces dispersion
- Verapamil
 - Inhibits I_{Kr} but also Ca influx
 - No QT prolongation or TdP
- Ranolazine
 - Prolongs QT but no TdP
 - Inhibits late I_{Na} , I_{kr} , and I_{NaCa}
 - No EAD's, reduces dispersion;
 - Suppresses E4031 induced TdP

Thus QTc Prolongation need not cause TdP

Issues

- QT prolongation ≠ Proarrhythmia
- HERG block ≠ Proarrhythmia
- Negative impact on drug development
- New paradigm

New Paradigm

A new cardiac safety paradigm focused on nonclinical measurement of proarrhythmia proclivity

Focus on the real issue: Proarrhythmia

- Reduce the premature termination of drugs with favourable benefit:risk profiles
- Make drug development more efficient
 - Move the bulk of proarrhythmic assessment to the discovery phase
 - Use the assays to potentially guide candidate selection
 - Obviate the TQT study
- Enhance the accuracy with which existing and/or new drugs are labelled relative to actual proarrhythmic risks

American Heart Journal

Rechanneling the cardiac proarrhythmia safety paradigm: A meeting report from the Cardiac Safety Research Consortium

Philip T. Sager, MD, FACC, FAHA,^a Gary Gintant, PhD,^b J. Rick Turner, PhD,^c Syril Pettit, MEM,^d and Norman Stockbridge, MD, PhD^e Palo Alto, CA; North Chicago, IL; Durham, NC; Washington, DC; and White Oak, MD

- Proarrhythmic risk can be determined by preclinical assessments
- Proclivity to develop EAD's
 - Ionic Currents
 - in silico modeling
 - Cell-Based Approach
 - Focus on high throughput approaches
- ECG Phase 1 Assessment

American Heart J 2014

CiPA: Two Component Proposal

Ionic Currents / In Silico Based Approach

Effects on Multiple Cardiac Currents (Voltage Clamp Studies)

Reconstruction of Cellular Electrophysiology (*In Silico* Studies) Myocyte-Based Approach

Effects on Human Ventricular Myocytes (*In Vitro* Studies)

- Complementary approaches
- Not designed to reproduce arrhythmia

Define a gradation of risk instead of a binary approach

Comprehensive In Vitro ProArrhythmia Assay (CIPA)

- Potential to make drug development more efficient
- Move arrhythmia risk assessment to the discovery phase
- Reduce the premature termination of drugs with favorable benefit:risk ratios

Collaborators

- Drs. Stockbridge, Gintant, Petit, and the Steering Comm.
- FDA
- EMA
- PMDA
- Health Canada
- CSRC
- HESI
- SPS
- In Silico Modelers
- Pharmaceutical and Device Companies
- CRO's
- Numerous Academic Groups

Thank you

Philip Sager, MD, FACC, FAHA Psager@Stanford.edu Ph 650.450.7477